Late Cambrian – Early Ordovician magmatism in the Sierra de Pie de Palo, Sierras Pampeanas (Argentina): implications for the early evolution of the proto-Andean margin of Gondwana
暂无分享,去创建一个
[1] Yue-heng Yang,et al. Allanite U–Th–Pb geochronology by ion microprobe , 2020 .
[2] M. Basei,et al. A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana , 2018, Earth-Science Reviews.
[3] R. Pankhurst,et al. A Cambrian mixed carbonate–siliciclastic platform in SW Gondwana: evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin , 2018, International Journal of Earth Sciences.
[4] M. Basei,et al. The Nahuel Niyeu basin: A Cambrian forearc basin in the eastern North Patagonian Massif , 2017 .
[5] D. Rubatto. Zircon: The Metamorphic Mineral , 2017 .
[6] J. Crowley,et al. Ultrafast magmatic buildup and diversification to produce continental crust during subduction , 2017, Geology.
[7] N. Bellahsen,et al. Crustal shortening at the Sierra Pie de Palo (Sierras Pampeanas, Argentina): near-surface basement folding and thrusting , 2016, Geological Magazine.
[8] R. Pankhurst,et al. Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): New insights into the mantle contribution , 2016 .
[9] S. Siegesmund,et al. The Nico Pérez Terrane (Uruguay): From Archean crustal growth and connections with the Congo Craton to late Neoproterozoic accretion to the Río de la Plata Craton , 2016 .
[10] R. Pankhurst,et al. Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications , 2016 .
[11] C. Galindo,et al. The Difunta Correa metasedimentary sequence (NW Argentina): relict of a Neoproterozoic platform? — elemental and Sr-Nd isotope evidence , 2015 .
[12] C. Casquet,et al. U–Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): Provenance and paleogeographic implications , 2015 .
[13] Kei Sato,et al. Geology, structure and age of the Nahuel Niyeu Formation in the Aguada Cecilio area, North Patagonian Massif, Argentina , 2015 .
[14] P. Renne,et al. Crustal shortening, exhumation, and strain localization in a collisional orogen: The Bajo Pequeño Shear Zone, Sierra de Pie de Palo, Argentina , 2014 .
[15] R. Pankhurst,et al. The Gondwana connections of northern Patagonia , 2014, Journal of the Geological Society.
[16] Wei-Qiang Ji,et al. A ‘hidden’ 18O-enriched reservoir in the sub-arc mantle , 2014, Scientific Reports.
[17] P. Renne,et al. Multiple migmatite events and cooling from granulite facies metamorphism within the Famatina arc margin of northwest Argentina , 2014 .
[18] Kendra E. Murray,et al. Mantle-drip magmatism beneath the Altiplano-Puna plateau, central Andes , 2013 .
[19] R. Pankhurst,et al. Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana , 2013 .
[20] Eber A. Cristofolini,et al. Reconstruction of the Early Ordovician Famatinian arc through thermobarometry in lower and middle crustal exposures, Sierra de Valle Fértil, Argentina , 2013 .
[21] H. Kopp. Invited review paper: The control of subduction zone structural complexity and geometry on margin segmentation and seismicity , 2013 .
[22] R. Pankhurst,et al. Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina , 2012 .
[23] D. Pearson,et al. Detrital zircon U–Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc , 2012 .
[24] F. Finger,et al. Lead contents of S-type granites and their petrogenetic significance , 2012, Contributions to Mineralogy and Petrology.
[25] A. Mogessie,et al. On the origin of multi‐layer coronas between olivine and plagioclase at the gabbro–granulite transition, Valle Fértil–La Huerta Ranges, San Juan Province, Argentina , 2012 .
[26] M. Ducea,et al. Geological, Petrological and Geochemical Evidence for Progressive Construction of an Arc Crustal Section, Sierra de Valle Fertil, Famatinian Arc, Argentina , 2012 .
[27] R. Carlson,et al. The Sm-Nd history of KREEP , 2011 .
[28] M. Larrovere,et al. Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco , 2011 .
[29] S. Siegesmund,et al. Geodynamic evolution of the Eastern Sierras Pampeanas (Central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data , 2011 .
[30] S. Siegesmund,et al. The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview , 2011 .
[31] C. V. Staal,et al. An Alpine-style Ordovician collision complex in the Sierra de Pie de Palo, Argentina: Record of subduction of Cuyania beneath the Famatina arc , 2011 .
[32] P. Renne,et al. Structural evolution of a composite middle to lower crustal section: The Sierra de Pie de Palo, northwest Argentina , 2011 .
[33] F. Albarède,et al. The redox state of arc mantle using Zn/Fe systematics , 2010, Nature.
[34] F. Chemale,et al. Geochemistry of Neoproterozoic-Cambrian metasedimentary rocks of the Caucete Group, Sierra de Pie de Palo, Argentina , 2010 .
[35] S. Meffre,et al. Revealing the continental margin of Gondwana: the Ordovician arc of the Cordón de Lila (northern Chile) , 2010 .
[36] G. Gehrels,et al. Timing constraints on building an intermediate plutonic arc crustal section: U‐ Pb zircon geochronology of the Sierra Valle Fértil–La Huerta, Famatinian arc, Argentina , 2010 .
[37] D. Morata,et al. Peraluminous Grenvillian TTG in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina: Petrology, geochronology, geochemistry and petrogenetic implications , 2010 .
[38] M. Ducea,et al. Generation of Tonalitic and Dioritic Magmas by Coupled Partial Melting of Gabbroic and Metasedimentary Rocks within the Deep Crust of the Famatinian Magmatic Arc, Argentina , 2009, Journal of Petrology.
[39] S. Wilde,et al. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary , 2009 .
[40] J. Malavieille,et al. Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling , 2009 .
[41] C. Cisterna,et al. Puna (Argentina) and northern Chile Ordovician basic magmatism: A contribution to the tectonic setting , 2009 .
[42] R. Pankhurst,et al. New SHRIMP U-Pb data from the Famatina Complex: constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina , 2008 .
[43] R. Pankhurst,et al. The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa-Antofalla block of southern Peru? : implications for West Gondwana margin evolution , 2008 .
[44] R. Pankhurst,et al. The Río de la Plata craton and the assembly of SW Gondwana , 2007 .
[45] J. Saavedra,et al. Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids , 2007 .
[46] P. Renne,et al. Cambrian initiation of the Las Pirquitas thrust of the western Sierras Pampeanas, Argentina: Implications for the tectonic evolution of the proto-Andean margin of South America , 2007 .
[47] M. Whitehouse,et al. U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes , 2007 .
[48] S. Finney. The Parautochthonous Gondwanan origin of the Cuyania (greater Precordillera) terrane of Argentina : a re-evaluation of evidence used to support an allochthonous Laurentian origin , 2007 .
[49] S. Siegesmund,et al. Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: implications for the Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina) , 2006, Journal of the Geological Society.
[50] R. Pankhurst,et al. Neoproterozoic A‐type magmatism in the Western Sierras Pampeanas (Argentina): evidence for Rodinia break‐up along a proto‐Iapetus rift? , 2006 .
[51] E. Baldo,et al. Tectonothermal ordovician evolution of the western margin of the Famatinian magmatic arc: metamorphism of the mafic and ultramafic rocks of Sierra de la Huerta -Las Imanas (Pampean Ranges, Argentina) , 2006 .
[52] R. Pankhurst,et al. Gondwanide continental collision and the origin of Patagonia , 2006 .
[53] M. René. Provenance studies of Moldanubian paragneisses based on geochemical data (Bohemian Massif, Czech Republic) , 2006 .
[54] J. Dahlquist,et al. Petrogenesis of cordierite-bearing S-type granitoids in Sierra de Chepes, Famatinian orogen, Argentina , 2005 .
[55] R. Handler,et al. Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: Implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina) , 2005 .
[56] Peter A. Cawood,et al. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic , 2005 .
[57] C. V. Staal,et al. Age Constraints on the Tectonic Evolution and Provenance of the Pie de Palo Complex, Cuyania Composite Terrane, and the Famatinian Orogeny in the Sierra de Pie de Palo, San Juan, Argentina , 2004 .
[58] V. Ramos. Cuyania, an Exotic Block to Gondwana: Review of a Historical Success and the Present Problems , 2004 .
[59] F. Dávila,et al. Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion , 2004 .
[60] J. Saavedra,et al. Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: tectonic implications , 2004 .
[61] D. Rubatto. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .
[62] J. Saavedra,et al. Involvement of the Argentine Precordillera terrane in the Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de Pie de Palo , 2001 .
[63] I. Williams. Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host‐rock partial melting, Cooma Complex, southeastern Australia , 2001 .
[64] B. Chappell,et al. Two contrasting granite types: 25 years later , 2001 .
[65] B. Wood,et al. High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities , 2001 .
[66] G. Solar,et al. Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons? , 2001 .
[67] G. Faure. The Origin of Igneous Rocks , 2000, Nature.
[68] P. Sylvester. Post-collisional strongly peraluminous granites , 1998 .
[69] P. Nabelek,et al. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks , 1998 .
[70] J. Saavedra,et al. Early evolution of the Proto-Andean margin of South America , 1998 .
[71] F. Hervé,et al. Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile , 1997 .
[72] W. A. Thomas,et al. The Argentine Precordillera: A Traveler from the Ouachita Embayment of North American Laurentia , 1996, Science.
[73] R. Astini,et al. The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: A geodynamic model , 1995 .
[74] W. McDonough,et al. The composition of the Earth , 1995 .
[75] N. Harris,et al. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya , 1993 .
[76] J. N. Rossi,et al. METAMORFISMO DE BAJA PRESION, SU RELACION CON EL DESARROLLO DE LA CUENCA PUNCOVISCANA, PLUTONISMO y REGIMEN TECTONICO. ARGENTINA , 1992 .
[77] G. Schubert,et al. The continental crustal age distribution: Methods of determining mantle separation ages from Sm‐Nd isotopic data and application to the southwestern United States , 1991 .
[78] V. Ramos. Late Proterozoic-Early Paleozoic of South America -a Collisional History , 1988 .
[79] R. Allmendinger,et al. The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation , 1986 .
[80] M. Meschede. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb1bZr1bY diagram , 1986 .
[81] H. Huppert,et al. Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust , 1985 .
[82] F. Albarède,et al. Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution , 1985 .
[83] S. Goldstein,et al. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems , 1984 .
[84] H. Heinrichs,et al. Loss of metals from pelites during regional metamorphism , 1984 .
[85] E. Watson. Basalt contamination by continental crust: Some experiments and models , 1982 .
[86] G. Wasserburg,et al. Sm-Nd isotopic evolution of chondrites , 1980 .
[87] K. Marti,et al. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .
[88] A. Miyashiro. Volcanic rock series in island arcs and active continental margins , 1974 .
[89] R. Pankhurst,et al. Determination of Rb/Sr and 87Sr86Sr ratios of some standard rocks and evaluation of X-ray fluorescence spectrometry in Rb1bSr geochemistry , 1973 .
[90] V. Ramos. The Famatinian Orogen Along the Protomargin of Western Gondwana: Evidence for a Nearly Continuous Ordovician Magmatic Arc Between Venezuela and Argentina , 2018 .
[91] R. Pankhurst,et al. The pre-Mesozoic rocks of northern Chile: U–Pb ages, and Hf and O isotopes , 2016 .
[92] L. Petrescu,et al. The origin and petrologic evolution of the Ordovician Famatinian-Puna arc , 2015 .
[93] Kendra E. Murray,et al. Foundering-driven lithospheric melting: The source of central Andean mafic lavas on the Puna Plateau (22°S–27°S) , 2015 .
[94] C.-T. A. Lee,et al. 4.12 – Physics and Chemistry of Deep Continental Crust Recycling , 2014 .
[95] S. Bryan,et al. Zircon chronochemistry of high heat-producing granites in Queensland and Europe , 2011 .
[96] R. Pankhurst,et al. The Arequipa Massif of Peru : new SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian orogen , 2010 .
[97] U. Klötzli,et al. Timing and rate of granulite facies metamorphism and cooling from multi-mineral chronology on migmatitic gneisses, Sierras de La Huerta and Valle Fértil, NW Argentina , 2010 .
[98] Edgardo G. Baldo,et al. Evolución tectonotermal ordovícica del borde occidental del arco magmático Famatiniano: metamorfismo de las rocas máficas y ultramáficas de la Sierra de La Huerta- de Las Imanas (Sierras Pampeanas, Argentina) , 2010 .
[99] Donna L. Whitney,et al. Abbreviations for names of rock-forming minerals , 2010 .
[100] R. Pankhurst,et al. The Western Sierras Pampeanas: Protracted Grenville-age history (1330-1030 Ma) of intra-oceanic arcs, subduction-accretion at continental-edge and AMCG intraplate magmatism , 2010 .
[101] Peter A. Cawood,et al. Accretionary orogens through Earth history , 2009 .
[102] D. Jerram,et al. Understanding crystal populations and their significance through the magma plumbing system , 2008 .
[103] Carlos W. Rapela,et al. Datación U-Pb SHRIMP de circones detríticos en paranfibolitas neoproterozoicas de las secuencia Difunta Correa (Sierras Pampeanas Occidentales, Argentina) , 2005 .
[104] I. Dalziel,et al. An orphaned basement block: The Arequipa-Antofalla Basement of the central Andean margin of South America , 2004 .
[105] G. Faure. Origin of igneous rocks : the isotopic evidence , 2001 .
[106] I. Buick,et al. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia , 2001 .
[107] R. Pankhurst,et al. Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina , 2000, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[108] A. P. Douce,et al. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas , 1999 .
[109] J. Saavedra,et al. The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin , 1998, Geological Society, London, Special Publications.
[110] A. Camacho,et al. U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin , 1998, Geological Society, London, Special Publications.
[111] S. Kay,et al. A Laurentian? Grenville-age oceanic arc/back-arc terrane in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina , 1998, Geological Society, London, Special Publications.
[112] R. Pankhurst,et al. The proto-Andean margin of Gondwana: an introduction , 1998, Geological Society, London, Special Publications.
[113] C. Casquet,et al. Datos preliminares sobre el metamorfismo de la Sierra de Pie de Palo, Sierras Pampeanas Occidentales (Argentina) , 1998 .
[114] V. Ramos,et al. Time constraints on the Early Palaeozoic docking of the Precordillera, central Argentina , 1998, Geological Society, London, Special Publications.
[115] W. Compston,et al. A SHRIMP ion microprobe study of inherited and magmatic zircons from four Scottish Caledonian granites , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[116] W. McDonough,et al. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.
[117] J. Winchester,et al. Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .