Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis

[1]  P. Bullough,et al.  Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. , 2013, Biochemistry.

[2]  Peter G. Adams,et al.  Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. , 2012, Biochimica et biophysica acta.

[3]  Neil F. Johnson,et al.  Interplay between excitation kinetics and reaction-center dynamics in purple bacteria , 2010, 1008.5347.

[4]  N. Johnson,et al.  Light-harvesting mechanism of bacteria exploits a critical interplay between the dynamics of transport and trapping. , 2010, Physical review letters.

[5]  Klaus Schulten,et al.  Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides. , 2009, Chemical physics.

[6]  Michael R. Jones,et al.  Structure, function and interactions of the PufX protein. , 2008, Biochimica et biophysica acta.

[7]  Richard Cogdell,et al.  Introduction: a selection of work from the recent Satellite Meeting on Photosynthetic Light Harvesting. , 2008, Photosynthesis research.

[8]  S. Scheuring,et al.  Dynamics and diffusion in photosynthetic membranes from rhodospirillum photometricum. , 2006, Biophysical journal.

[9]  S. Scheuring AFM studies of the supramolecular assembly of bacterial photosynthetic core-complexes. , 2006, Current opinion in chemical biology.

[10]  V. Helms,et al.  A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the Cytochrome bc1 complex. , 2006, Biophysical Journal.

[11]  S. Scheuring,et al.  The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. , 2006, Journal of molecular biology.

[12]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[13]  S. Scheuring,et al.  Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. , 2005, Biochimica et biophysica acta.

[14]  Pu Qian,et al.  The 8.5A projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. , 2005, Journal of molecular biology.

[15]  Simon Scheuring,et al.  Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum , 2004, The EMBO journal.

[16]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[17]  Simon Scheuring,et al.  Watching the photosynthetic apparatus in native membranes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  F. Mavelli,et al.  Kinetics of the quinone binding reaction at the QB site of reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomes. , 2003, European journal of biochemistry.

[19]  Klaus Schulten,et al.  Photosynthetic apparatus of purple bacteria , 2002, Quarterly Reviews of Biophysics.

[20]  K. Schulten,et al.  Kinetics of Excitation Migration and Trapping in the Photosynthetic Unit of Purple Bacteria , 2001 .

[21]  C. Bauer,et al.  Molecular evidence for the early evolution of photosynthesis. , 2000, Science.

[22]  C. Beenakker,et al.  Long-range correlation of thermal radiation , 1998, quant-ph/9809007.

[23]  K Schulten,et al.  Architecture and mechanism of the light-harvesting apparatus of purple bacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Fleming,et al.  Femtosecond spectroscopy of photosynthetic light-harvesting systems. , 1997, Current opinion in structural biology.

[25]  V. Sundström,et al.  Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why , 1996 .

[26]  M R Jones,et al.  Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[28]  F. G. Zhang,et al.  Detrapping of excitation energy from the reaction centre in the photosynthetic purple bacterium Rhodospirillum rubrum , 1993 .

[29]  C. N. Hunter,et al.  Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177K, studied by picosecond absorption spectroscopy , 1989, Photosynthesis Research.

[30]  V. Sundström,et al.  Characterization of excitation energy trapping in photosynthetic purple bacteria at 77 K , 1989 .

[31]  L. Mandel,et al.  Propagation of thermal light through a dispersive medium , 1989 .

[32]  N. Murata [Primary processes in photosynthesis]. , 1968, Seikagaku. The Journal of Japanese Biochemical Society.

[33]  H. Gaffron Evolution of photosynthesis. , 1962, Comparative biochemistry and physiology.

[34]  D. Abbott,et al.  Quantum Aspects of Life , 2008 .

[35]  Greg Gbur,et al.  Coherence properties of sunlight. , 2004, Optics letters.

[36]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[37]  Klaus Schulten,et al.  Excitation energy trapping by the reaction center of Rhodobacter Sphaeroides , 2000 .

[38]  P. Mathis,et al.  Primary Processes of Photosynthesis , 1981 .