Molecular motors robustly drive active gels to a critically connected state

A study of an actomyosin active gel now demonstrates the importance of the crosslinking density of actin polymers in enabling myosin motors to internally drive contraction and rupture the network into clusters. These results could help us to better understand the role of the cytoskeleton in cell division and tissue morphogenesis.

[1]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[2]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[3]  S. Lowey,et al.  [7] Preparation of myosin and its subfragments from rabbit skeletal muscle , 1982 .

[4]  J. D. Pardee,et al.  [18] Purification of muscle actin , 1982 .

[5]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[6]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[7]  S. Leibler,et al.  Self-organization of microtubules and motors , 1997, Nature.

[8]  D. Weitz,et al.  Scaling of the microrheology of semidilute F-actin solutions , 1999 .

[9]  F. Jülicher,et al.  Auditory sensitivity provided by self-tuned critical oscillations of hair cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Schofield,et al.  Three-dimensional direct imaging of structural relaxation near the colloidal glass transition , 2000, Science.

[11]  U. Schwarz,et al.  Elastic interactions of cells. , 2002, Physical review letters.

[12]  T. Ando,et al.  Polarized actin bundles formed by human fascin‐1: their sliding and disassembly on myosin II and myosin V in vitro , 2003, Journal of neurochemistry.

[13]  P. Janmey,et al.  Nonlinear elasticity in biological gels , 2004, Nature.

[14]  F. MacKintosh,et al.  High-frequency stress relaxation in semiflexible polymer solutions and networks. , 2006, Physical review letters.

[15]  D Groswasser,et al.  Active gels : dynamics of patterning and self-organization , 2006 .

[16]  Frank Jülicher,et al.  Active behavior of the Cytoskeleton , 2007 .

[17]  J. Käs,et al.  Molecular motor-induced instabilities and cross linkers determine biopolymer organization. , 2007, Biophysical journal.

[18]  Daniel A. Fletcher,et al.  Reversible stress softening of actin networks , 2007, Nature.

[19]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[20]  L Mahadevan,et al.  Elasticity of floppy and stiff random networks. , 2008, Physical review letters.

[21]  Peter Sollich,et al.  Shear banding, aging and noise dynamics in soft glassy materials , 2008, Soft Matter.

[22]  David A. Winkler,et al.  Critical-like self-organization and natural selection: Two facets of a single evolutionary process? , 2008, Biosyst..

[23]  F. MacKintosh,et al.  Nonequilibrium mechanics and dynamics of motor-activated gels. , 2007, Physical review letters.

[24]  Lior Haviv,et al.  A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent. , 2008, Journal of molecular biology.

[25]  Daisuke Mizuno,et al.  Active and passive microrheology in equilibrium and nonequilibrium systems , 2008 .

[26]  J. Gollub,et al.  Random organization in periodically driven systems , 2008 .

[27]  Prabuddha Sengupta,et al.  Critical fluctuations in plasma membrane vesicles. , 2008, ACS chemical biology.

[28]  L Mahadevan,et al.  A quantitative analysis of contractility in active cytoskeletal protein networks. , 2008, Biophysical journal.

[29]  Martin van Hecke,et al.  TOPICAL REVIEW: Jamming of soft particles: geometry, mechanics, scaling and isostaticity , 2009 .

[30]  M. C. Marchetti,et al.  Mechanical response of active gels , 2008, 0807.3031.

[31]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[32]  Jacques Prost,et al.  Active gels as a description of the actin‐myosin cytoskeleton , 2009, HFSP journal.

[33]  Eric F. Wieschaus,et al.  Pulsed contractions of an actin–myosin network drive apical constriction , 2009, Nature.

[34]  D. Weitz,et al.  An active biopolymer network controlled by molecular motors , 2009, Proceedings of the National Academy of Sciences.

[35]  The Self-avoiding Walk Spanning a Strip , 2010, 1008.4321.

[36]  H. Swinney,et al.  Collective motion and density fluctuations in bacterial colonies , 2010, Proceedings of the National Academy of Sciences.

[37]  Eric F. Wieschaus,et al.  Integration of contractile forces during tissue invagination , 2010, The Journal of cell biology.

[38]  David S. Courson,et al.  Actin Cross-link Assembly and Disassembly Mechanics for α-Actinin and Fascin* , 2010, The Journal of Biological Chemistry.

[39]  J. Tinevez,et al.  Polar actomyosin contractility destabilizes the position of the cytokinetic furrow , 2011, Nature.

[40]  A. Bausch,et al.  Structure formation in active networks. , 2011, Nature materials.

[41]  Fred C. MacKintosh,et al.  Active multistage coarsening of actin networks driven by myosin motors , 2011, Proceedings of the National Academy of Sciences.

[42]  W. Bialek,et al.  Are Biological Systems Poised at Criticality? , 2010, 1012.2242.

[43]  Alfons van Blaaderen,et al.  Band formation in mixtures of oppositely charged colloids driven by an ac electric field. , 2011, Physical review letters.

[44]  Samuel A. Safran,et al.  Mechanical consequences of cellular force generation , 2011 .

[45]  C. Broedersz,et al.  Criticality and isostaticity in fibre networks , 2010, 1011.6535.

[46]  M. Gardel,et al.  F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex , 2012, Proceedings of the National Academy of Sciences.

[47]  W. Bialek,et al.  Statistical mechanics for natural flocks of birds , 2011, Proceedings of the National Academy of Sciences.

[48]  C. Heussinger Stress relaxation through crosslink unbinding in cytoskeletal networks , 2012, 1209.5291.

[49]  C. Broedersz,et al.  Actively stressed marginal networks. , 2012, Physical review letters.

[50]  Deborah Kuchnir Fygenson,et al.  Active, motor-driven mechanics in a DNA gel , 2012, Proceedings of the National Academy of Sciences.

[51]  Daniel T. N. Chen,et al.  Spontaneous motion in hierarchically assembled active matter , 2012, Nature.

[52]  Martin Lenz,et al.  Contractile units in disordered actomyosin bundles arise from F-actin buckling. , 2012, Physical review letters.

[53]  S. Ramaswamy,et al.  Soft Active Matter , 2012, 1207.2929.

[54]  Sui Huang,et al.  Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability , 2012, PLoS Comput. Biol..

[55]  C. Broedersz,et al.  Nonlinear effective-medium theory of disordered spring networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Nucleation-induced transition to collective motion in active systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  A. Bausch,et al.  Contraction Mechanisms in Composite Active Actin Networks , 2012, PloS one.

[58]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[59]  G. Koenderink,et al.  Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening , 2012, European Biophysics Journal.

[60]  Ulrich S Schwarz,et al.  United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction , 2012, Journal of Cell Science.

[61]  P. Wolynes,et al.  Active contractility in actomyosin networks , 2012, Proceedings of the National Academy of Sciences.

[62]  Peter G Wolynes,et al.  Tensegrity and motor-driven effective interactions in a model cytoskeleton. , 2012, The Journal of chemical physics.

[63]  Kunihiko Kaneko,et al.  Adaptation to optimal cell growth through self-organized criticality. , 2012, Physical review letters.

[64]  Petra Schwille,et al.  Myosin motors fragment and compact membrane-bound actin filaments , 2013, eLife.