A Signal-Passing DNA-Strand-Exchange Mechanism for Active Self-Assembly of DNA Nanostructures.

DNA nanostructured tiles play an active role in their own self-assembly in the system described herein whereby they initiate a binding event that produces a cascading assembly process. We present DNA tiles that have a simple but powerful property: they respond to a binding event at one end of the tile by passing a signal across the tile to activate a binding site at the other end. This action allows sequential, virtually irreversible self-assembly of tiles and enables local communication during the self-assembly process. This localized signal-passing mechanism provides a new element of control for autonomous self-assembly of DNA nanostructures.

[1]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[2]  Natasa Jonoska,et al.  Active Tile Self-assembly, Part 1: Universality at temperature 1 , 2014, Int. J. Found. Comput. Sci..

[3]  Jacob Hendricks,et al.  Signal Transmission across Tile Assemblies: 3D Static Tiles Simulate Active Self-assembly by 2D Signal-Passing Tiles , 2013, DNA.

[4]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[5]  N. Seeman,et al.  Ligation of DNA Triangles Containing Double Crossover Molecules , 1998 .

[6]  Peng Yin,et al.  Developmental Self-Assembly of a DNA Tetrahedron , 2014, ACS nano.

[7]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[8]  Chengde Mao,et al.  Synchronization of two assembly processes to build responsive DNA nanostructures. , 2014, Angewandte Chemie.

[9]  E. Winfree,et al.  Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. , 2008, Nano letters.

[10]  Wenyan Liu,et al.  Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced Tile Assembly Model , 2011, Natural Computing.

[11]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[12]  I. Willner,et al.  From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. , 2014, Chemical reviews.

[13]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[14]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[15]  Friedrich C Simmel,et al.  Robustness of localized DNA strand displacement cascades. , 2014, ACS nano.

[16]  Phiset Sa-Ardyen,et al.  The flexibility of DNA double crossover molecules. , 2003, Biophysical journal.

[17]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[18]  V. Linko,et al.  The enabled state of DNA nanotechnology. , 2013, Current opinion in biotechnology.

[19]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[21]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[22]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[23]  Nadrian C Seeman,et al.  RNA used to control a DNA rotary nanomachine. , 2006, Nano letters.

[24]  Erik Winfree,et al.  Integrating DNA strand-displacement circuitry with DNA tile self-assembly , 2013, Nature Communications.

[25]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[26]  John H. Reif,et al.  Activatable Tiles: Compact, Robust Programmable Assembly and Other Applications , 2007, DNA.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Friedrich C. Simmel,et al.  Nukleinsäure‐basierte molekulare Werkzeuge , 2011 .

[29]  Matthew J. Patitz,et al.  Asynchronous signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient assembly of Shapes , 2012, Int. J. Found. Comput. Sci..

[30]  N. Seeman,et al.  Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate , 2006, Science.

[31]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[32]  Damien Woods,et al.  Parallel computation using active self-assembly , 2013, Natural Computing.