Three-Dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP-ICE, Part 1: Model, Algorithm, and Validation

To realistically compute three-dimensional droplet impingement on aircraft and engines, an Eulerian model for diphasic aire ows containing water droplets is proposed as an alternative to the traditional Lagrangian particle tracking approach. The partial differential equations-based model is presented, together with details on the numerical methods and its algorithmic implementation in three dimensions within the e nite element Navier ‐Stokes analysis package for icing. Code validations in two and three dimensions are presented in comparison with published NASA experimental impingement results, and numerical accuracy requirements are discussed.

[1]  K. D. Korkan,et al.  On ice shape prediction methodologies and comparison with experimental data , 1989 .

[2]  Wagdi G. Habashi,et al.  A Finite Element Method Study of Eulerian Droplets Impingement Models , 1999 .

[3]  Colin S. Bidwell,et al.  Ice Accretion Calculations for a Commercial Transport Using the LEWICE3D, ICEGRID3D and CMARC Programs , 1999 .

[4]  Mark G. Potapczuk,et al.  LEWICE/E: An Euler based ice accretion code , 1992 .

[5]  Harold E. Addy,et al.  Modern Airfoil ice accretions , 1997 .

[6]  Lakshmi N. Sankar,et al.  Effects of icing on the aerodynamic performance of high lift airfoils , 1993 .

[7]  W B Wright,et al.  DRA/NASA/ONERA COLLABORATION ON ICING RESEARCH, PART 2 , 1997 .

[8]  William B. Wright,et al.  Computational Simulation of Large Droplet Icing , 1996 .

[9]  M. Velazquez,et al.  Ice accretion and performance degradation calculations with LEWICE/NS , 1993 .

[10]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[11]  Dave Sweet,et al.  Experimental determination of the droplet impingement characteristics of a propeller , 1997 .

[12]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[13]  Michael B. Bragg,et al.  An experimental and computational investigation of spanwise-step-ice shapes on airfoil aerodynamics , 1998 .

[14]  Gary A. Ruff,et al.  Users Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE) , 1990 .

[15]  E. D. Lynch,et al.  Overview of the state-of-the-practice of computational fluid dynamics in advanced propulsion system design , 1997 .

[16]  William Wright,et al.  Comparison of LEWICE 1.6 and LEWICE/NS with IRT experimental data from modern air foil tests , 1997 .

[17]  Wagdi G. Habashi,et al.  Numerical simulation of performance degradation of ice contaminated airfoils , 1997 .

[18]  Michel Fortin,et al.  Certifiable Computational Fluid Dynamics Through Mesh Optimization , 1998 .

[19]  Wagdi G. Habashi,et al.  Fluid-structure interactions using the ALE formulation , 1999 .

[20]  W. Habashi,et al.  Development of a Shallow-Water Icing Model in FENSAP-ICE , 2000 .

[21]  Mark G. Potapczuk,et al.  A Review of NASA Lewis' Development Plans for Computational Simulation of Aircraft Icing , 1999 .

[22]  Lakshmi N. Sankar,et al.  Numerical investigation of performance degradation of wings and rotors due to icing , 1992 .

[23]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[24]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[25]  Stanley R. Mohler,et al.  COLLECTION EFFICIENCY AND ICE ACCRETION CALCULATIONS FOR A SPHERE, A SWEPT MS(1)-317 WING, A SWEPT NACA-0012 WING TIP, AN AXISYMMETRIC INLET, AND A BOEING 737-300 INLET. , 1995 .