Discrete-Query Quantum Algorithm for NAND Trees

This is a comment on the article “A Quantum Algorithm for the Hamiltonian NAND Tree” by Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, Theory of Computing 4 (2008) 169--190. That paper gave a quantum algorithm for evaluating NAND trees with running time O(√N) in the Hamiltonian query model. In this note, we point out that their algorithm can be converted into an algorithm using N^[1/2 + o(1)] queries in the conventional (discrete) quantum query model.

[1]  Michael E. Saks,et al.  A lower bound on the quantum query complexity of read-once functions , 2001, Electron. Colloquium Comput. Complex..

[2]  Carlos Mochon Hamiltonian Oracles , 2006 .

[3]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[4]  Miklos Santha On the Monte Carlo Boolean decision tree complexity of read-once formulae , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[5]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[6]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[7]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[8]  Miklos Santha On the Monte Carlo Boolean Decision Tree Complexity of Read-Once Formulae , 1995, Random Struct. Algorithms.

[9]  Michael E. Saks,et al.  Probabilistic Boolean decision trees and the complexity of evaluating game trees , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  Marc Snir,et al.  Lower Bounds on Probabilistic Linear Decision Trees , 1985, Theor. Comput. Sci..

[11]  Andris Ambainis,et al.  Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer , 2010, SIAM J. Comput..

[12]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[13]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER , 2010 .

[14]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .