Discovery and characterization of natural tropolones as inhibitors of the antibacterial target CapF from Staphylococcus aureus

[1]  T. Dick,et al.  Antibacterial drug discovery: doing it right. , 2015, Chemistry & biology.

[2]  Dean G. Brown,et al.  Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. , 2014, Journal of medicinal chemistry.

[3]  Timothy J. Foster,et al.  Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus , 2013, Nature Reviews Microbiology.

[4]  K. Tsumoto,et al.  Dynamic elements govern the catalytic activity of CapE, a capsular polysaccharide‐synthesizing enzyme from Staphylococcus aureus , 2013, FEBS letters.

[5]  K. Tsumoto,et al.  Crystal structure of the capsular polysaccharide synthesizing protein CapE of Staphylococcus aureus , 2013, Bioscience reports.

[6]  K. Tsumoto,et al.  Incorporation of rapid thermodynamic data in fragment-based drug discovery. , 2013, Journal of medicinal chemistry.

[7]  D. Scott,et al.  Fragment-based approaches in drug discovery and chemical biology. , 2012, Biochemistry.

[8]  K. Tsumoto,et al.  Crystal structure of the enzyme CapF of Staphylococcus aureus reveals a unique architecture composed of two functional domains. , 2012, The Biochemical journal.

[9]  E. Freire,et al.  Finding a better path to drug selectivity. , 2011, Drug discovery today.

[10]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[11]  Seth M Cohen,et al.  Identifying chelators for metalloprotein inhibitors using a fragment-based approach. , 2011, Journal of medicinal chemistry.

[12]  C. Fishwick,et al.  Structure-based discovery of antibacterial drugs , 2010, Nature Reviews Microbiology.

[13]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[14]  K. Tsumoto,et al.  Contributions of interfacial residues of human Interleukin15 to the specificity and affinity for its private alpha-receptor. , 2009, Journal of molecular biology.

[15]  R. Bentley A fresh look at natural tropolonoids. , 2008, Natural product reports.

[16]  Anthony M Giannetti,et al.  Surface plasmon resonance based assay for the detection and characterization of promiscuous inhibitors. , 2008, Journal of medicinal chemistry.

[17]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[18]  W. Maret,et al.  Dual nanomolar and picomolar Zn(II) binding properties of metallothionein. , 2007, Journal of the American Chemical Society.

[19]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[20]  T. Foster Immune evasion by staphylococci , 2005, Nature Reviews Microbiology.

[21]  D. McNally,et al.  Biosynthesis of UDP-N-acetyl-l-fucosamine, a Precursor to the Biosynthesis of Lipopolysaccharide in Pseudomonas aeruginosa Serotype O11* , 2005, Journal of Biological Chemistry.

[22]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[23]  Katherine O'Riordan,et al.  Staphylococcus aureus Capsular Polysaccharides , 2004, Clinical Microbiology Reviews.

[24]  J. Brisson,et al.  Three Highly Conserved Proteins Catalyze the Conversion of UDP-N-acetyl-d-glucosamine to Precursors for the Biosynthesis of O Antigen in Pseudomonas aeruginosaO11 and Capsule in Staphylococcus aureus Type 5 , 2003, The Journal of Biological Chemistry.

[25]  W. Qian,et al.  Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. , 2002, Journal of the American Chemical Society.

[26]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[27]  B. Robinson-Dunn,et al.  Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working Group. , 1999, The New England journal of medicine.

[28]  A. Conde Staphylococcus aureus infections. , 1998, The New England journal of medicine.

[29]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[30]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.

[31]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[32]  P. L. Pauson Tropones and Tropolones , 1955 .

[33]  Jia Zhou,et al.  Evolutions in fragment-based drug design: the deconstruction-reconstruction approach. , 2015, Drug discovery today.

[34]  G. Keserű,et al.  Is there a link between selectivity and binding thermodynamics profiles? , 2015, Drug discovery today.

[35]  M. Rybak,et al.  Emergence of Methicillin-Resistant Staphylococcus aureus with Intermediate Glycopeptide Resistance , 2012, Drugs.

[36]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.