A local numerical solution of a fluid-flow problem on an irregular domain

Abstract This paper deals with a numerical solution of an incompressible Navier-Stokes flow on non-uniform domains. The numerical solution procedure comprises the Meshless Local Strong Form Method for spatial discretization, explicit time stepping, local pressure-velocity coupling and an algorithm for positioning of computational nodes inspired by Smoothed Particles Hydrodynamics method. The presented numerical approach is demonstrated by solving a lid driven cavity flow and backward facing step problems, first on regular nodal distributions up to 315,844 (562 × 562) nodes and then on domain filled with randomly generated obstacles. It is demonstrated that the presented solution procedure is accurate, stable, convergent, and it can effectively solve the fluid flow problem on complex geometries. The results are presented in terms of velocity profiles, convergence plots, and stability analyses.

[1]  Gui-Rong Liu,et al.  A stabilized least-squares radial point collocation method (LS-RPCM) for adaptive analysis , 2006 .

[2]  S. C. Fan,et al.  Local multiquadric approximation for solving boundary value problems , 2003 .

[3]  T. Belytschko,et al.  AN ADAPTIVE CONTINUUM/DISCRETE CRACK APPROACH FOR MESHFREE PARTICLE METHODS , 2003 .

[4]  V. C. Loukopoulos,et al.  A meshless scheme for incompressible fluid flow using a velocity-pressure correction method , 2013 .

[5]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[6]  T. Belytschko,et al.  Adaptivity for structured meshfree particle methods in 2D and 3D , 2005 .

[7]  Mohammad Shekarchi,et al.  A Fast Adaptive Wavelet scheme in RBF Collocation for nearly singular potential PDEs , 2008 .

[8]  S. Atluri,et al.  Meshless Generalized Finite Difference Method and Human Carotid Atherosclerotic Plaque Progression Simulation Using Multi-Year MRI Patient-Tracking Data. , 2008, Computer modeling in engineering & sciences : CMES.

[9]  M. H. Afshar,et al.  Solving Poisson’s Equations By TheDiscrete Least Square Meshless Method , 2006 .

[10]  Ying Liu,et al.  Node Placement Method by Bubble Simulation and Its Application , 2010 .

[11]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[12]  G. Kosec,et al.  Local strong form meshless method on multiple GraphicsProcessing Units , 2013 .

[13]  C. A. Bustamante,et al.  A global meshless collocation particular solution method (integrated Radial Basis Function) for two-dimensional Stokes flow problems , 2013 .

[14]  T. Rabczuk,et al.  Error Estimate and Adaptive Refinement in Mixed Discrete Least Squares Meshless Method , 2014 .

[15]  Roman Trobec,et al.  Simulation of semiconductor devices with a local numerical approach , 2015 .

[16]  B. Šarler,et al.  H-Adaptive Local Radial Basis Function Collocation Meshless Method , 2011 .

[17]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[18]  Božidar Šarler,et al.  Low and Intermediate Re Solution of Lid Driven CavityProblem by Local Radial Basis Function CollocationMethod , 2013 .

[19]  Hans Johnston,et al.  Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term , 2004 .

[20]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[21]  Roman Trobec,et al.  Meshless solution of a diffusion equation with parameter optimization and error analysis , 2008 .

[22]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[23]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[24]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[25]  T. Rabczuk,et al.  Simulation of high velocity concrete fragmentation using SPH/MLSPH , 2003 .

[26]  M. Sahin,et al.  A novel fully implicit finite volume method applied to the lid‐driven cavity problem—Part I: High Reynolds number flow calculations , 2003 .

[27]  José M. C. Pereira,et al.  Adaptive mesh finite-volume calculation of 2D lid-cavity corner vortices , 2013, J. Comput. Phys..

[28]  T. Rabczuk,et al.  Discontinuous modelling of shear bands using adaptive meshfree methods , 2008 .

[29]  Gregor Kosec,et al.  Simulation of macrosegregation with mesosegregates in binary metallic casts by a meshless method , 2014 .

[30]  Markus Rettenmayr,et al.  Solving diffusion problems on an unstructured, amorphous grid by a meshless method , 2012 .

[31]  Xin Li,et al.  Trefftz Methods for Time Dependent Partial Differential Equations , 2004 .

[32]  D. Gartling A test problem for outflow boundary conditions—flow over a backward-facing step , 1990 .

[33]  R. Trobec,et al.  Comparison of local weak and strong form meshless methods for 2-D diffusion equation , 2012 .

[34]  Roman Trobec,et al.  Computational complexity and parallelization of the meshless local Petrov-Galerkin method , 2009 .

[35]  Rainald Löhner,et al.  A general advancing front technique for filling space with arbitrary objects , 2004 .

[36]  Thong-See Lee A false transient approach to steady state solution of fluid flow through vascular constrictions , 1991 .

[37]  Mohammad Hadi Afshar,et al.  Mixed discrete least squares meshless method for planar elasticity problems using regular and irregular nodal distributions , 2012 .

[38]  Hamou Sadat,et al.  A new meshless approach for three dimensional fluid flow and related heat transfer problems , 2012, 1809.02502.

[39]  B. Šarler,et al.  Solution of a phase-field model for dissolution of primary particles in binary aluminum alloys by an r-adaptive mesh-free method , 2005 .

[40]  Fausto Arpino,et al.  Artificial compressibility based CBS solutions for double diffusive natural convection in cavities , 2013 .

[41]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[42]  Timo Siikonen,et al.  An artificial compressibility method for viscous incompressible and low Mach number flows , 2008 .

[43]  Roman Trobec,et al.  Super linear speedup in a local parallel meshless solution of thermo-fluid problems , 2014 .

[44]  Božidar Šarler,et al.  From Global to Local Radial Basis Function Collocation Method for Transport Phenomena , 2007 .