The ng_ζ1 toxin of the gonococcal epsilon/zeta toxin/antitoxin system drains precursors for cell wall synthesis

[1]  C. Broeckling,et al.  The effector AvrRxo1 phosphorylates NAD in planta , 2017, PLoS pathogens.

[2]  A. Rocker,et al.  3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1 , 2016, The Journal of Biological Chemistry.

[3]  W. Chan,et al.  The Streptococcus pneumoniae pezAT Toxin–Antitoxin System Reduces β-Lactam Resistance and Genetic Competence , 2016, Front. Microbiol..

[4]  F. García-del Portillo,et al.  Toxin-antitoxins and bacterial virulence. , 2016, FEMS microbiology reviews.

[5]  H. Ishihara,et al.  AvrRxo1 Is a Bifunctional Type III Secreted Effector and Toxin-Antitoxin System Component with Homologs in Diverse Environmental Contexts , 2016, PloS one.

[6]  Dae-Hee Lee,et al.  Comparative genomics and experimental evolution of Escherichia coli BL21(DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction , 2015, Scientific Reports.

[7]  J. Tokuhisa,et al.  Crystal Structure of Xanthomonas AvrRxo1-ORF1, a Type III Effector with a Polynucleotide Kinase Domain, and Its Interactor AvrRxo1-ORF2. , 2015, Structure.

[8]  Shuai Le,et al.  The chromosomal SezAT toxin–antitoxin system promotes the maintenance of the SsPI‐1 pathogenicity island in epidemic Streptococcus suis , 2015, Molecular microbiology.

[9]  A. Rocker,et al.  A cis‐acting antitoxin domain within the chromosomal toxin–antitoxin module EzeT of Escherichia coli quenches toxin activity , 2015, Molecular microbiology.

[10]  Tanel Tenson,et al.  Recent functional insights into the role of (p)ppGpp in bacterial physiology , 2015, Nature Reviews Microbiology.

[11]  J. Alonso,et al.  Toxin ζ Reversible Induces Dormancy and Reduces the UDP-N-Acetylglucosamine Pool as One of the Protective Responses to Cope with Stress , 2014, Toxins.

[12]  L. Van Melderen,et al.  Toxin-Antitoxin Systems as Multilevel Interaction Systems , 2014, Toxins.

[13]  E. Rotem,et al.  HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase , 2013, Nature Communications.

[14]  Sang Jun Lee,et al.  Inactivation of Metabolic Genes Causes Short- and Long-Range dys-Regulation in Escherichia coli Metabolic Network , 2013, PloS one.

[15]  N. Zenkin,et al.  Molecular mechanism of bacterial persistence by HipA. , 2013, Molecular cell.

[16]  A. Garcia-Pino,et al.  The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu , 2013, Nature chemical biology.

[17]  U. Zielenkiewicz,et al.  Regulation of toxin-antitoxin systems by proteolysis. , 2013, Plasmid.

[18]  Peter C. Fineran,et al.  Ribonucleases in bacterial toxin-antitoxin systems. , 2013, Biochimica et biophysica acta.

[19]  R. Bertram,et al.  Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. , 2013, FEMS microbiology letters.

[20]  S. Brantl Bacterial type I toxin-antitoxin systems , 2012, RNA biology.

[21]  K. Gerdes,et al.  Bacterial persistence and toxin-antitoxin loci. , 2012, Annual review of microbiology.

[22]  M. Inouye,et al.  Toxin-antitoxin systems in bacteria and archaea. , 2011, Annual review of genetics.

[23]  H. Mutschler,et al.  ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development , 2011, Journal of Molecular Medicine.

[24]  T. Wood,et al.  Toxin-Antitoxin Systems Influence Biofilm and Persister Cell Formation and the General Stress Response , 2011, Applied and Environmental Microbiology.

[25]  A. Leach,et al.  A Variable Region within the Genome of Streptococcus pneumoniae Contributes to Strain-Strain Variation in Virulence , 2011, PloS one.

[26]  Raphaël Leplae,et al.  Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families , 2011, Nucleic acids research.

[27]  R. Shoeman,et al.  A Novel Mechanism of Programmed Cell Death in Bacteria by Toxin–Antitoxin Systems Corrupts Peptidoglycan Synthesis , 2011, PLoS biology.

[28]  Xiaoyuan Wang,et al.  Lipopolysaccharide: Biosynthetic pathway and structure modification. , 2010, Progress in lipid research.

[29]  C. van der Does,et al.  Conjugative Plasmids of Neisseria gonorrhoeae , 2010, PloS one.

[30]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[31]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[32]  R. Lenski,et al.  Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. , 2009, Journal of molecular biology.

[33]  Seema Namboori,et al.  Enzymatic analysis of uridine diphosphate N-acetyl-D-glucosamine. , 2008, Analytical biochemistry.

[34]  Liisa Holm,et al.  Searching protein structure databases with DaliLite v.3 , 2008, Bioinform..

[35]  D. Blanot,et al.  Cytoplasmic steps of peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[36]  H. Rubin,et al.  Characterization of Nucleotide Pools as a Function of Physiological State in Escherichia coli , 2007, Journal of bacteriology.

[37]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[38]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[39]  Anton Meinhart,et al.  Molecular and Structural Characterization of the PezAT Chromosomal Toxin-Antitoxin System of the Human Pathogen Streptococcus pneumoniae* , 2007, Journal of Biological Chemistry.

[40]  W. Hunter,et al.  Nucleotide substrate recognition by UDP-N-acetylglucosamine acyltransferase (LpxA) in the first step of lipid A biosynthesis. , 2007, Journal of molecular biology.

[41]  U. Zielenkiewicz,et al.  The Toxin-Antitoxin System of the Streptococcal Plasmid pSM19035 , 2005, Journal of bacteriology.

[42]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[43]  K. Gerdes,et al.  Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes , 2005, Nucleic acids research.

[44]  P. Berti,et al.  UDP-N-acetylmuramic acid (UDP-MurNAc) is a potent inhibitor of MurA (enolpyruvyl-UDP-GlcNAc synthase). , 2005, Biochemistry.

[45]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[46]  M. W. van der Woude,et al.  Phase and Antigenic Variation in Bacteria , 2004, Clinical Microbiology Reviews.

[47]  Mitsuhiko Ikura,et al.  MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. , 2003, Molecular cell.

[48]  Anton Meinhart,et al.  Crystal structure of the plasmid maintenance system ɛ/ζ: Functional mechanism of toxin ζ and inactivation by ɛ2ζ2 complex formation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Måns Ehrenberg,et al.  The Bacterial Toxin RelE Displays Codon-Specific Cleavage of mRNAs in the Ribosomal A Site , 2003, Cell.

[50]  S. Walker,et al.  The Kinetic Characterization of Escherichia coli MurG Using Synthetic Substrate Analogues , 1999 .

[51]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[52]  J. Alonso,et al.  Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis. , 1993, Gene.

[53]  L. Wyns,et al.  The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. , 1993, Journal of molecular biology.

[54]  J. Alonso,et al.  Characterization of the effectors required for stable inheritance of Streptococcus pyogenes pSM19035-derived plasmids in Bacillus subtilis , 1993, Molecular and General Genetics MGG.

[55]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[56]  R F Standaert,et al.  Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. , 1993, Journal of molecular biology.

[57]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[58]  D. Mengin-Lecreulx,et al.  Variations in UDP-N-acetylglucosamine and UDP-N-acetylmuramyl-pentapeptide pools in Escherichia coli after inhibition of protein synthesis , 1989, Journal of bacteriology.

[59]  A. Bzowska,et al.  Properties of two unusual, and fluorescent, substrates of purine-nucleoside phosphorylase: 7-methylguanosine and 7-methylinosine. , 1986, Biochimica et biophysica acta.

[60]  S. Morse,et al.  High-level tetracycline resistance in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM determinant , 1986, Antimicrobial Agents and Chemotherapy.

[61]  K. Gerdes,et al.  Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. , 1986, The EMBO journal.

[62]  W. H. Elliott,et al.  Data for Biochemical Research , 1986 .

[63]  Z. A. McGee,et al.  Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. , 1984, The Journal of infectious diseases.

[64]  T. Ogura,et al.  Mini-F plasmid genes that couple host cell division to plasmid proliferation. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Heijenoort,et al.  Pool levels of UDP N-acetylglucosamine and UDP N-acetylglucosamine-enolpyruvate in Escherichia coli and correlation with peptidoglycan synthesis , 1983, Journal of bacteriology.

[66]  J. Heijenoort,et al.  Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli , 1982, Journal of bacteriology.

[67]  R. Rosenthal Release of soluble peptidoglycan from growing gonococci: hexaminidase and amidase activities , 1979, Infection and immunity.

[68]  J. Berghäuser A reactive arginine in adenylate kinase. , 1975, Biochimica et biophysica acta.

[69]  Paul Doty,et al.  Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet , 1963 .

[70]  T. Arndt Crystal , 2019, Springer Reference Medizin.

[71]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[72]  W. Delano The PyMOL Molecular Graphics System , 2002 .