Inference of Bacterial Microevolution Using Multilocus Sequence Data

We describe a model-based method for using multilocus sequence data to infer the clonal relationships of bacteria and the chromosomal position of homologous recombination events that disrupt a clonal pattern of inheritance. The key assumption of our model is that recombination events introduce a constant rate of substitutions to a contiguous region of sequence. The method is applicable both to multilocus sequence typing (MLST) data from a few loci and to alignments of multiple bacterial genomes. It can be used to decide whether a subset of isolates share common ancestry, to estimate the age of the common ancestor, and hence to address a variety of epidemiological and ecological questions that hinge on the pattern of bacterial spread. It should also be useful in associating particular genetic events with the changes in phenotype that they cause. We show that the model outperforms existing methods of subdividing recombinogenic bacteria using MLST data and provide examples from Salmonella and Bacillus. The software used in this article, ClonalFrame, is available from http://bacteria.stats.ox.ac.uk/.

[1]  M. Maiden,et al.  Multilocus sequence typing. , 2009, Methods in molecular biology.

[2]  Michel Mandjes,et al.  Analysis of congestion periods of an m/m/infinity-queue , 2007, Perform. Evaluation.

[3]  Daniel Falush,et al.  A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? , 2006, Genome research.

[4]  Daniel Falush,et al.  Mismatch induced speciation in Salmonella: model and data , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  Benjamin D. Redelings,et al.  BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny , 2006, Bioinform..

[6]  Daniel Falush,et al.  Genome-wide association mapping in bacteria? , 2006, Trends in microbiology.

[7]  Paul Fearnhead,et al.  Exact and efficient Bayesian inference for multiple changepoint problems , 2006, Stat. Comput..

[8]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[9]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[10]  Michel Mandjes,et al.  Analysis of congestion periods of an M/M/inf-queue , 2006 .

[11]  D. Gevers,et al.  Re-evaluating prokaryotic species , 2005, Nature Reviews Microbiology.

[12]  G. McVean,et al.  Approximating the coalescent with recombination , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  O. Pybus,et al.  Bayesian coalescent inference of past population dynamics from molecular sequences. , 2005, Molecular biology and evolution.

[14]  Daniel J. Wilson,et al.  The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. , 2005, Molecular biology and evolution.

[15]  Christophe Fraser,et al.  Neutral microepidemic evolution of bacterial pathogens. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Falush,et al.  Sequence Typing and Comparison of Population Biology of Campylobacter coli and Campylobacter jejuni , 2005, Journal of Clinical Microbiology.

[17]  Edward J Feil,et al.  Displaying the relatedness among isolates of bacterial species -- the eBURST approach. , 2004, FEMS microbiology letters.

[18]  E. Holmes,et al.  Population Structure and Evolution of the Bacillus cereus Group , 2004, Journal of bacteriology.

[19]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[20]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[21]  W. Hanage,et al.  eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data , 2004, Journal of bacteriology.

[22]  J. Lawrence,et al.  Lateral gene transfer: when will adolescence end? , 2003, Molecular microbiology.

[23]  David J. Balding,et al.  Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities , 2003 .

[24]  P. Fearnhead,et al.  A coalescent-based method for detecting and estimating recombination from gene sequences. , 2002, Genetics.

[25]  D. Falush,et al.  Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size, and minimal age , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Martin C. J. Maiden,et al.  Bioinformatics Applications Note Sequence Type Analysis and Recombinational Tests (start) , 2022 .

[27]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[28]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[29]  P. Lio’,et al.  Molecular phylogenetics: state-of-the-art methods for looking into the past. , 2001, Trends in genetics : TIG.

[30]  M Achtman,et al.  Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Holmes,et al.  Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Hein,et al.  Consequences of recombination on traditional phylogenetic analysis. , 2000, Genetics.

[33]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000, Softw. Pract. Exp..

[34]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[35]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[36]  J. M. Smith,et al.  Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. , 2000, Genetics.

[37]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[38]  M. Achtman,et al.  The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. , 1999, Molecular biology and evolution.

[39]  D. Balding,et al.  Genealogical inference from microsatellite data. , 1998, Genetics.

[40]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[41]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Bryant Building trees, hunting for trees, and comparing trees : theory and methods in phylogenetic analysis , 1997 .

[43]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[44]  P. Marjoram,et al.  Ancestral Inference from Samples of DNA Sequences with Recombination , 1996, J. Comput. Biol..

[45]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[46]  P Donnelly,et al.  Coalescents and genealogical structure under neutrality. , 1995, Annual review of genetics.

[47]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[49]  R Milkman,et al.  Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. , 1990, Genetics.

[50]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[51]  Anne Lohrli Chapman and Hall , 1985 .

[52]  I. Crawford,et al.  Clustered third-base substitutions among wild strains of Escherichia coli. , 1983, Science.

[53]  R. Hudson Properties of a neutral allele model with intragenic recombination. , 1983, Theoretical population biology.

[54]  C. J-F,et al.  THE COALESCENT , 1980 .

[55]  S. Jeffery Evolution of Protein Molecules , 1979 .

[56]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[57]  H. Munro,et al.  Mammalian protein metabolism , 1964 .