Control Theory for Automation: Fundamentals

In this chapter autonomous dynamical systems, stability, asymptotic behavior, dynamical systems with inputs, feedback stabilization of linear systems, feedback stabilization of nonlinear systems, and tracking and regulation are discussed to provide the foundation for control theory for automation.

[1]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[2]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[3]  A. Isidori Nonlinear Control Systems , 1985 .

[4]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[5]  L. Marconi,et al.  Output Stabilization via Nonlinear Luenberger Observers , 2006, SIAM J. Control. Optim..

[6]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[7]  H. Khalil,et al.  Semiglobal stabilization of a class of nonlinear systems using output feedback , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[8]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[9]  A. Isidori,et al.  Semiglobal nonlinear output regulation with adaptive internal model , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[10]  Christopher I. Byrnes,et al.  Steady-state behaviors in nonlinear systems with an application to robust disturbance rejection , 2008, Annu. Rev. Control..

[11]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[12]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[13]  Jack K. Hale,et al.  Dynamics in Infinite Dimensions , 2002 .

[14]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[15]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[16]  Lorenzo Marconi,et al.  Semi-global nonlinear output regulation with adaptive internal model , 2001, IEEE Trans. Autom. Control..