Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating
暂无分享,去创建一个
[1] B. A. Boom,et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.
[2] V. J. Hamedan,et al. Preventing transient parametric instabilities in high power gravitational wave detectors using thermal transient compensation , 2017 .
[3] Y. Ma,et al. Thermal modulation for suppression of parametric instability in advanced gravitational wave detectors , 2017, 1702.01899.
[4] Thermal modelling of Advanced LIGO test masses , 2016, 1612.02866.
[5] J. Worden,et al. First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. , 2016, Physical review letters.
[6] A. Heptonstall,et al. Overview of Advanced LIGO adaptive optics. , 2016, Applied optics.
[7] A. Matsko,et al. Mitigating parametric instability in optical gravitational wave detectors , 2016 .
[8] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[9] Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory. , 2015, Applied optics.
[10] Y. Levin,et al. Modelling Thermoelastic Distortion of Optics Using Elastodynamic Reciprocity , 2015, 1504.03266.
[11] David Blair,et al. Observation of Parametric Instability in Advanced LIGO. , 2015, Physical review letters.
[12] Lisa Barsotti,et al. Resonant dampers for parametric instabilities in gravitational wave detectors , 2015 .
[13] David Blair,et al. Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation , 2015, 1501.01542.
[14] M. S. Shahriar,et al. Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.
[15] S. Klimenko,et al. Advanced LIGO , 2014, 1411.4547.
[16] Eugenio Coccia,et al. Thermal effects and their compensation in Advanced Virgo , 2012 .
[17] Lisa Barsotti,et al. Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators , 2011, 1704.03587.
[18] David Blair,et al. Parametric instabilities in advanced gravitational wave detectors , 2010 .
[19] Jerome Degallaix,et al. OSCAR a Matlab based optical FFT code , 2010 .
[20] D. Blair,et al. Thermal lensing compensation principle for the ACIGA's High Optical Power Test Facility Test 1 , 2005 .
[21] S. Strigin,et al. Analysis of parametric oscillatory instability in power recycled LIGO interferometer , 2002, Proceedings of CAOL 2005. Second International Conference on Advanced Optoelectronics and Lasers, 2005..
[22] P. Fritschel,et al. Adaptive thermal compensation of test masses in advanced LIGO , 2001, gr-qc/0110011.
[23] S. Strigin,et al. Parametric oscillatory instability in Fabry-Perot interferometer , 2001, gr-qc/0107079.
[24] P. Hello. Compensation for thermal effects in mirrors of gravitational wave interferometers , 2001, gr-qc/0104059.
[25] E. Black. An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .
[26] R. Drever,et al. Fabry-Perot cavity gravity-wave detectors , 1991 .
[27] H. Kogelnik,et al. Laser beams and resonators. , 1966, Applied optics.