Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating

In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.

[1]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[2]  V. J. Hamedan,et al.  Preventing transient parametric instabilities in high power gravitational wave detectors using thermal transient compensation , 2017 .

[3]  Y. Ma,et al.  Thermal modulation for suppression of parametric instability in advanced gravitational wave detectors , 2017, 1702.01899.

[4]  Thermal modelling of Advanced LIGO test masses , 2016, 1612.02866.

[5]  J. Worden,et al.  First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. , 2016, Physical review letters.

[6]  A. Heptonstall,et al.  Overview of Advanced LIGO adaptive optics. , 2016, Applied optics.

[7]  A. Matsko,et al.  Mitigating parametric instability in optical gravitational wave detectors , 2016 .

[8]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[9]  Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory. , 2015, Applied optics.

[10]  Y. Levin,et al.  Modelling Thermoelastic Distortion of Optics Using Elastodynamic Reciprocity , 2015, 1504.03266.

[11]  David Blair,et al.  Observation of Parametric Instability in Advanced LIGO. , 2015, Physical review letters.

[12]  Lisa Barsotti,et al.  Resonant dampers for parametric instabilities in gravitational wave detectors , 2015 .

[13]  David Blair,et al.  Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation , 2015, 1501.01542.

[14]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[15]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[16]  Eugenio Coccia,et al.  Thermal effects and their compensation in Advanced Virgo , 2012 .

[17]  Lisa Barsotti,et al.  Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators , 2011, 1704.03587.

[18]  David Blair,et al.  Parametric instabilities in advanced gravitational wave detectors , 2010 .

[19]  Jerome Degallaix,et al.  OSCAR a Matlab based optical FFT code , 2010 .

[20]  D. Blair,et al.  Thermal lensing compensation principle for the ACIGA's High Optical Power Test Facility Test 1 , 2005 .

[21]  S. Strigin,et al.  Analysis of parametric oscillatory instability in power recycled LIGO interferometer , 2002, Proceedings of CAOL 2005. Second International Conference on Advanced Optoelectronics and Lasers, 2005..

[22]  P. Fritschel,et al.  Adaptive thermal compensation of test masses in advanced LIGO , 2001, gr-qc/0110011.

[23]  S. Strigin,et al.  Parametric oscillatory instability in Fabry-Perot interferometer , 2001, gr-qc/0107079.

[24]  P. Hello Compensation for thermal effects in mirrors of gravitational wave interferometers , 2001, gr-qc/0104059.

[25]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[26]  R. Drever,et al.  Fabry-Perot cavity gravity-wave detectors , 1991 .

[27]  H. Kogelnik,et al.  Laser beams and resonators. , 1966, Applied optics.