A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems

[1]  J. K. Chen,et al.  A corrective smoothed particle method for boundary value problems in heat conduction , 1999 .

[2]  J. K. Chen,et al.  An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .

[3]  S. Savage,et al.  Flow of fractured ice through wedge-shaped channels : smoothed particle hydrodynamics and discrete-element simulations , 1998 .

[4]  Satya N. Atluri,et al.  A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method , 1998 .

[5]  Courtenay T. Vaughan,et al.  Parallel Transient Dynamics Simulations: Algorithms for Contact Detection and Smoothed Particle Hydrodynamics , 1998, J. Parallel Distributed Comput..

[6]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[7]  Ted Belytschko,et al.  Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method , 1998 .

[8]  W. Welton,et al.  Two-Dimensional PDF/SPH Simulations of Compressible Turbulent Flows , 1998 .

[9]  Ted Belytschko,et al.  Explicit Reproducing Kernel Particle Methods for large deformation problems , 1998 .

[10]  J. Monaghan,et al.  Implicit SPH Drag and Dusty Gas Dynamics , 1997 .

[11]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[12]  S. Savage,et al.  Smoothed Particle Hydrodynamics for the Simulation of Broken-Ice Fields , 1997 .

[13]  Stephen B. Pope,et al.  PDF Model Calculations of Compressible Turbulent Flows Using Smoothed Particle Hydrodynamics , 1997 .

[14]  Wing Kam Liu,et al.  Multiresolution reproducing kernel particle method for computational fluid dynamics , 1997 .

[15]  Mark A Fleming,et al.  ENRICHED ELEMENT-FREE GALERKIN METHODS FOR CRACK TIP FIELDS , 1997 .

[16]  Subrata Mukherjee,et al.  On boundary conditions in the element-free Galerkin method , 1997 .

[17]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[18]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[19]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[20]  G. R. Johnson,et al.  SPH for high velocity impact computations , 1996 .

[21]  G. R. Johnson,et al.  NORMALIZED SMOOTHING FUNCTIONS FOR SPH IMPACT COMPUTATIONS , 1996 .

[22]  Dennis W. Quinn,et al.  An Analysis of 1-D Smoothed Particle Hydrodynamics Kernels , 1996 .

[23]  R. P. Ingel,et al.  An approach for tension instability in smoothed particle hydrodynamics (SPH) , 1995 .

[24]  H. Posch,et al.  Viscous conducting flows with smooth-particle applied mechanics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  H. Posch,et al.  Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[27]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[28]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[29]  Larry D. Libersky,et al.  Cylindrical smoothed particle hydrodynamics , 1993 .

[30]  Kazuhiko Kakuda,et al.  The generalized boundary element approach to Burgers' equation , 1990 .

[31]  W. D. Liam Finn,et al.  Space‐time finite elements incorporating characteristics for the burgers' equation , 1980 .

[32]  Paul Arminjon,et al.  Numerical solution of burgers' equations in two space dimensions☆ , 1979 .

[33]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[34]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[35]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[36]  Theodore C. Carney,et al.  High-velocity impact of graphite/epoxy composite laminates , 1997 .

[37]  G. V. Belov,et al.  Experimental modelling and numerical simulation of high- and hypervelocity space debris impact to spacecraft shield protection , 1997 .

[38]  C. Hayhurst,et al.  Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates , 1997 .

[39]  V. Bashurov,et al.  Numerical simulation of rod particles hypervelocity impact effectiveness at various attack angles , 1997 .

[40]  P. W. Randles,et al.  Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics , 1995 .

[41]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[42]  C. A. Wingate,et al.  Impact modeling with smooth particle hydrodynamics , 1992 .

[43]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .