Femtosecond laser filament array generated with step phase plate in air.

Femtosecond laser filament arrays are generated in air by using three kinds of step phase plates with π phase lag, namely, the semicircular phase plate (SCPP), the quarter-circle phase plate (QCPP) and eight-octant phase plate (EOPP). Experimental results and simulations show that filament arrays consisting of two, four and eight filaments, respectively, are produced by three phase plates. The transverse patterns of the filament arrays are determined by the geometrical shapes of the phase plates. At the same time, the separation distances are found to vary with the focal lengths of the used lenses. We further propose that by using an axicon, filament array in the form of ring shape could be realized while the lengths of the filaments could be significantly elongated at the same time. Our study has suggested a realistic method to generate filament array by the step phase plate with π phase lag.

[1]  J. Kasparian,et al.  Higher-order Kerr improve quantitative modeling of laser filamentation. , 2012, Optics letters.

[2]  A. Mysyrowicz,et al.  Revival of femtosecond laser plasma filaments in air by a nanosecond laser. , 2009, Optics express.

[3]  E. Wright,et al.  Experimental tests of the new paradigm for laser filamentation in gases. , 2010, Physical review letters.

[4]  Taylor D. Grow,et al.  Dependence of multiple filamentation on beam ellipticity. , 2005 .

[5]  J. Mcleod The Axicon: A New Type of Optical Element , 1954 .

[6]  Miroslav Kolesik,et al.  Curved Plasma Channel Generation Using Ultraintense Airy Beams , 2009, Science.

[7]  Arnaud Couairon,et al.  Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon , 2009 .

[8]  I. S. Golubtsov,et al.  Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol) , 2003 .

[9]  P. Rohwetter,et al.  Laser multiple filamentation control in air using a smooth phase mask , 2008 .

[10]  Jean-Claude Kieffer,et al.  Microwave guiding in air by a cylindrical filament array waveguide , 2008 .

[11]  Zuoqiang Hao,et al.  Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept , 2012 .

[12]  Ruxin Li,et al.  Femtosecond filamentation in argon and higher-order nonlinearities. , 2011, Optics letters.

[13]  P. Zeitoun,et al.  Two-dimensional organization of a large number of stationary optical filaments by adaptive wave front control , 2008 .

[14]  B. Shim,et al.  Controlled Interactions of Femtosecond Light Filaments in Air , 2008 .

[15]  A. Dubietis,et al.  Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[16]  Daniele Faccio,et al.  Filamentation in Kerr media from pulsed Bessel beams , 2008 .

[17]  J. Solis,et al.  Transverse nonlinear optics in Heavy Metal Oxide Glass , 2008 .

[18]  Stelios Tzortzakis,et al.  Tunable intense Airy beams and tailored femtosecond laser filaments , 2010 .

[19]  Olga G. Kosareva,et al.  Filamentation of femtosecond laser pulses in turbulent air , 2002 .

[20]  S. Kuo,et al.  INTERACTION OF AN ELECTROMAGNETIC WAVE WITH A RAPIDLY CREATED SPATIALLY PERIODIC PLASMA , 1997 .

[21]  A. Couairon,et al.  Organizing multiple femtosecond filaments in air. , 2004, Physical review letters.

[22]  Bernard Prade,et al.  Determination of the inertial contribution to the nonlinear refractive index of air, N 2 , and O 2 by use of unfocused high-intensity femtosecond laser pulses , 1997 .

[23]  See Leang Chin,et al.  The critical laser intensity of self-guided light filaments in air , 2000 .

[24]  S. Skupin,et al.  Ultrashort filaments of light in weakly ionized, optically transparent media , 2007 .

[25]  Miroslav Kolesik,et al.  OPTICALLY TURBULENT FEMTOSECOND LIGHT GUIDE IN AIR , 1999 .

[26]  Olga G. Kosareva,et al.  Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse , 2005 .

[27]  Zhichuan J. Xu,et al.  Control of filament branching in air by astigmatically focused femtosecond laser pulses , 2011 .

[28]  See Leang Chin,et al.  Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse , 1999 .

[29]  A. Couairon,et al.  Femtosecond filamentation in transparent media , 2007 .

[30]  See Leang Chin,et al.  Ultrafast control of multiple filamentation by ultrafast laser pulses , 2005 .

[31]  Jie Zhang,et al.  Interaction of light filaments generated by femtosecond laser pulses in air. , 2006, Physical review letters.

[32]  K. Tachibana,et al.  Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas , 2005 .

[33]  H Schroeder,et al.  From random to controlled small-scale filamentation in water. , 2004, Optics express.

[34]  Zhi‐zhan Xu,et al.  Plasma waveguide array induced by filament interaction. , 2009, Optics Letters.

[35]  J. Wolf,et al.  Higher-order Kerr terms allow ionization-free filamentation in gases. , 2010, Physical review letters.

[36]  H. Zeng,et al.  Attraction and repulsion of parallel femtosecond filaments in air , 2009 .

[37]  O. Kosareva,et al.  Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse , 2005 .

[38]  A. Couairon,et al.  Breakup and fusion of self-guided femtosecond light pulses in air. , 2001, Physical review letters.

[39]  Thomas Pfeifer,et al.  Circular phase mask for control and stabilization of single optical filaments. , 2006, Optics letters.

[40]  Jean-Pierre Wolf,et al.  Physics and applications of atmospheric nonlinear optics and filamentation. , 2008, Optics express.

[41]  Gadi Fibich,et al.  Control of multiple filamentation in air. , 2004, Optics letters.

[42]  Kim M. Hajek,et al.  Control of lasing filament arrays in nonlinear liquid media , 2008 .

[43]  Zhi‐zhan Xu,et al.  Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol , 2012 .

[44]  Jie Zhang,et al.  Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole. , 2007, Optics express.

[45]  Qihuang Gong,et al.  Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. , 2002, Optics letters.

[46]  G. Spindler,et al.  Multifilamentation of femtosecond laser pulses induced by small-scale air turbulence , 2009 .

[47]  Wenxue Li,et al.  Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air , 2011 .

[48]  See Leang Chin,et al.  Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate. , 2009, Optics letters.

[49]  See Leang Chin,et al.  Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing? , 2011, Optics letters.

[50]  Q. Gong,et al.  Filamentation of interacting femtosecond laser pulses in air , 2008 .

[51]  J. Diels,et al.  On the higher-order Kerr effect in femtosecond filaments. , 2010, Optics letters.

[52]  G. Roy,et al.  Controlling a bunch of multiple filaments by means of a beam diameter , 2006 .

[53]  A. Zheltikov,et al.  Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations , 2010 .

[54]  Ya Cheng,et al.  Multiple filamentation generated by focusing femtosecond laser with axicon. , 2012, Optics letters.

[55]  Olga G. Kosareva,et al.  The propagation of powerful femtosecond laser pulses in optical media : physics, applications, and new challenges , 2005 .

[56]  J. Wolf,et al.  Transition from plasma-driven to Kerr-driven laser filamentation. , 2011, Physical review letters.

[57]  Gadi Fibich,et al.  Multiple filamentation induced by input-beam ellipticity. , 2003, Optics letters.

[58]  Carlos J Zapata-Rodríguez,et al.  Diffraction-free beams in thin films. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  V. I. Bespalov,et al.  Filamentary Structure of Light Beams in Nonlinear Liquids , 1966 .

[60]  F. Théberge,et al.  Filamentation nonlinear optics , 2007 .

[61]  J. Solis,et al.  Interaction of self-trapped beams in high index glass. , 2009, Optics express.

[62]  Paolo Di Trapani,et al.  Generation of extended plasma channels in air using femtosecond Bessel beams. , 2008, Optics express.

[63]  G. Roy,et al.  Effect of beam diameter on the propagation of intense femtosecond laser pulses , 2005 .

[64]  G. Spindler,et al.  Multifilamentation of femtosecond laser pulses propagating in turbulent air near the ground , 2009 .