Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland

[1]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[2]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[3]  Andrew K. Skidmore,et al.  Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[4]  Mohammad Taleai,et al.  Evaluating the compatibility of multi-functional and intensive urban land uses , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[5]  D. Xie,et al.  LAI inversion algorithm based on directional reflectance kernels. , 2007, Journal of environmental management.

[6]  O. Hagolle,et al.  LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm , 2007 .

[7]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[8]  R. Giering,et al.  Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes , 2007 .

[9]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[10]  R. Houborg,et al.  Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data , 2007 .

[11]  M. Cho Hyperspectral remote sensing of biochemical and biophysical parameters: the derivate red-edge "double-peak feature", a nuisance or an opportunity? , 2007 .

[12]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[13]  Mami Suzuki,et al.  Somaclonal variation in Tricyrtis hirta plants regenerated from 1-year-old embryogenic callus cultures , 2006 .

[14]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[15]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[16]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[17]  Martha C. Anderson,et al.  A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery ☆ , 2004 .

[18]  R. Jongschaap,et al.  Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status , 2004 .

[19]  K. Itten,et al.  Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties , 2004 .

[20]  R. Colombo,et al.  Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations , 2004 .

[21]  V. K. Dadhwal,et al.  Comparison of principal component inversion with VI-empirical approach for LAI estimation using simulated reflectance data , 2004 .

[22]  Pablo J. Zarco-Tejada,et al.  Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .

[23]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[24]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[25]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[26]  C. François,et al.  Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements , 2004 .

[27]  J. Markwell,et al.  Calibration of the Minolta SPAD-502 leaf chlorophyll meter , 2004, Photosynthesis Research.

[28]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[29]  Jean-Philippe Gastellu-Etchegorry,et al.  An interpolation procedure for generalizing a look-up table inversion method , 2003 .

[30]  R. Colombo,et al.  Retrieval of leaf area index in different vegetation types using high resolution satellite data , 2003 .

[31]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[32]  Clement Atzberger,et al.  Retrieval of wheat bio - physical attributes from hyperspectral data and SAILH + PROSPECT radiative transfer model , 2003 .

[33]  Clement Atzberger,et al.  Retrieval of wheat biophysical attributes from hyperspectral data and SAILH + PROSPECT radiative transfer model , 2003 .

[34]  Andres Kuusk,et al.  Comparison of measured boreal forest characteristics with estimates from TM data and limited ancillary information using reflectance model inversion , 2002 .

[35]  N. Broge,et al.  Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture , 2002 .

[36]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[37]  F. Baret,et al.  Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies , 2002 .

[38]  C. Bacour,et al.  Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. , 2000 .

[39]  J. Privette,et al.  Inversion methods for physically‐based models , 2000 .

[40]  Yann Kerr,et al.  Leaf area index estimates using remotely sensed data and BRDF models in a semiarid region. , 2000 .

[41]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[42]  F. Baret,et al.  Evaluation of Canopy Biophysical Variable Retrieval Performances from the Accumulation of Large Swath Satellite Data , 1999 .

[43]  Peng Gong,et al.  Inverting a canopy reflectance model using a neural network , 1999 .

[44]  Fraser Gemmell,et al.  An Investigation of Terrain Effects on the Inversion of a Forest Reflectance Model , 1998 .

[45]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[46]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[47]  Daniel Schläpfer,et al.  1st EARSEL Workshop on Imaging Spectroscopy , 1998 .

[48]  Michael T. Manry,et al.  Attributes of neural networks for extracting continuous vegetation variables from optical and radar , 1998 .

[49]  S. T. Gower,et al.  Leaf area index of boreal forests: theory, techniques, and measurements , 1997 .

[50]  A. Gitelson,et al.  Remote estimation of chlorophyll content in higher plant leaves , 1997 .

[51]  T. Faurtyot Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study , 1997 .

[52]  Michel M. Verstraete,et al.  Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing , 1996 .

[53]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[54]  F. Baret,et al.  Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems , 1996 .

[55]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[56]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[57]  G. Carter Ratios of leaf reflectances in narrow wavebands as indicators of plant stress , 1994 .

[58]  J. Hill,et al.  Imaging spectrometry : a tool for environmental observations , 1994 .

[59]  Frédéric Baret,et al.  MODELING CANOPY SPECTRAL PROPERTIES TO RETRIEVE BIOPHYSICAL AND BIOCHEMICAL CHARACTERISTICS. , 1994 .

[60]  G. Guyot,et al.  Physical measurements and signatures in remote sensing , 1992 .

[61]  J. Dungan,et al.  Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration , 1992 .

[62]  J. Norman,et al.  Instrument for Indirect Measurement of Canopy Architecture , 1991 .

[63]  A. Kuusk The Hot Spot Effect in Plant Canopy Reflectance , 1991 .

[64]  Ranga B. Myneni,et al.  Photon-Vegetation Interactions , 1991, Springer Berlin Heidelberg.

[65]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[66]  Douglas G. Pfeiffer,et al.  Growing Conditions Alter the Relationship Between SPAD-501 Values and Apple Leaf Chlorophyll , 1990 .

[67]  P. Curran Remote sensing of foliar chemistry , 1989 .

[68]  Ghassem R. Asrar,et al.  Theory and applications of optical remote sensing. , 1989 .

[69]  G. Guyot,et al.  Utilisation de la Haute Resolution Spectrale pour Suivre L'etat des Couverts Vegetaux , 1988 .

[70]  Inversion of canopy reflectance models for estimation of vegetation parameters , 1987 .

[71]  W. Verhoef Earth observation modelling based on layer scattering matrices , 1984 .

[72]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[73]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .

[74]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[75]  L. Natr,et al.  Spectral Signatures of Objects in Remote Sensing , 1983 .

[76]  J. Steinier,et al.  Smoothing and differentiation of data by simplified least square procedure. , 1972, Analytical chemistry.

[77]  R. S. Singh,et al.  Remote Sensing the Forest , 1970 .

[78]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .