Image sequence analysis

I Introduction and Survey.- 1. Image Sequence Analysis: Motion Estimation.- 1.1 Outline of Book.- 1.2 Estimation of Two-Dimensional Translation.- 1.2.1 The Fourier Method.- 1.2.2 Matching.- 1.2.3 The Method of Differentials.- 1.3 Estimation of General Two-Dimensional Motion.- 1.4 Estimation of Three-Dimensional Motion: A Two-Step Method.- 1.4.1 Estimating Image-Space Shifts.- 1.4.2 Determining Motion Parameters - The Case of Three-Dimensional Translation.- 1.4.3 Determining Motion Parameters - The General Three-Dimensional Case.- 1.5 Estimation of Three-Dimensional Motion: A Direct Method.- 1.6 Summary.- References.- 2. Image Sequence Analysis: What Can We Learn from Applications?.- 1. Introduction.- 1.1 Long-Range Implications of Image Sequence Analysis.- 1.2 Scope of this Contribution.- 2. Application-Oriented Review.- 2.1 Coding of Image Sequences.- 2.1.1 Coarse Attributes of Broadcast TV-Frame Sequences.- 2.1.2 Predefined Frame Segmentation.- 2.1.3 Towards Variable Spatial Segmentation.- 2.1.4 Spatial Segmentation Based on Temporal Characteristics.- 2.1.5 Reduction of Spatial Bandwidth in Moving Subimages.- 2.1.6 Interframe Coding Based on Movement Compensation.- 2.1.7 Coding of Color Video Sequences.- 2.1.8 Discussion.- 2.2 Image Sequences from Airborne and Satellite Sensors.- 2.2.1 Horizontal Wind Velocities Derived from Image Sequences in the Visual Channel.- 2.2.2 Image Sequences Including the Infrared Channel.- 2.2.3 Formation and Refinement of Meteorological and Geological Knowledge.- 2.2.4 Registration of Images and Production of Mosaics.- 2.2.5 Change Detection.- 2.2.6 Cover-Type Mapping Based on Time-Varying Imagery.- 2.2.7 Discussion.- 2.3 Medicine: Image Sequences of the Human Body.- 2.3.1 Preprocessing of Image Sequences.- 2.3.2 Blood Circulation Studies.- 2.3.3 Delineating Images of the Heart for the Study of Dynamic Shape Variations.- 2.3.4 Isolation of Organs Based on Spectral and Temporal Pixel Characteristics.- 2.3.5 Quantitative Description, Categorization, and Modeling of Organ Functions.- 2.3.6 Body Surface Potential Maps.- 2.3.7 Studying the Pupil of the Human Eye.- 2.4 Biomedical Applications.- 2.5 Behavioral Studies.- 2.6 Object Tracking in Outdoor Scenes.- 2.6.1 Traffic Monitoring.- 2.6.2 Target Tracking.- 2.7 Industrial Automation and Robotics.- 2.8 Spatial Image Sequences.- 2.8.1 No Explicit Models: Presentation of Images from Spatial Slices.- 2.8.2 Isolation, Tracking, and Representation of Linelike Features in 3-D Space.- 2.8.3 Object Surfaces Derived from Contour Measurements in a Series of Slices.- 2.8.4 Surface Detection in Samples on a 3-D Grid.- 2.8.5 Volume Growing.- 2.8.6 Deriving Descriptions Based on Volume Primitives.- 2.8.7 Estimating Parameters of Spatial Models by Statistical Evaluation of Planar Sections (Stereology).- 2.8.8 Discussion.- 3. Modeling Temporal Variations of Image Functions Caused by Moving Objects.- 3.1 Estimating the Translation for Video Images of Moving Objects.- 3.2 Including Image Plane Rotation and Scale Changes into the Displacement Characteristic.- 3.3 Discussion.- 4. Conclusions.- 5. Acknowledgements.- 6. References.- 7. Author Index.- II Image Sequence Coding, Enhancement, and Segmentation.- 3. Image Sequence Coding.- 3.1 Overvi ew.- 3.2 The Television Signal.- 3.2.1 The Digital Television Signal.- a) Scanning.- b) Spectrum of Scanned Signal.- c) Sampling.- 3.2.2 Characterization of the Sampled Video Signal.- 3.3 Some Relevant Psychovisual Properties of the Viewer.- 3.3.1 Spatiotemporal Response of the Human Visual System.- 3.3.2 Perception in Moving Areas.- 3.3.3 Temporal Masking.- 3.3.4 Exchange of Spatial, Temporal, and Amplitude Resolution.- 3.4 Predictive Coding.- 3.4.1 Philosophy of Predictive Coding.- 3.4.2 Predictor Design.- a) Linear Predictors.- b) Nonlinear Predictors.- 3.4.3 Quantization.- 3.4.4 Code Assignment.- a) Variable-Word-Length Coding.- b) Run-Length Coding.- 3.5 Movement-Compensated Prediction.- 3.5.1 General.- 3.5.2 Block-Structured Movement-Compensated Coders.- a) Displacement Estimation.- b) Results.- 3.5.3 Pel-Recursive Movement-Compensated Coders.- a) Pel-Recursive Displacement Estimation.- b) Coder Operation.- 3.5.4 Code Assignment.- 3.6 Transform Coding.- 3.6.1 General.- 3.6.2 Coding of the Transform Coefficients.- 3.6.3 Types of Transforms.- 3.6.4 Adaptive Coding of Transform Coefficients.- 3.6.5 Hybrid Transform/DPCM Coding.- 3.7 Multimode Coders.- 3.7.1 Overview.- 3.7.2 Techniques Used in Multimode Coding.- a) Subsampling.- b) Temporal Filtering.- c) Change of Thresholds.- d) Switched Quantizers.- 3.7.3 Choice and Ordering of Modes of Operation.- 3.7.4 Multimode Coder Example.- 3.8 Color Coding.- 3.8.1 The NTSC Composite Video Signal.- 3.8.2 Three-Dimensional Spectrum of the NTSC Composite Signal.- 3.8.3 Predictive Coding.- 3.9 Concluding Remarks.- Appendix A: A Digital Television Sequence Store (DVS).- A. 1 Capabi Titles.- A. 2 The System.- A.3 Software.- References.- 4. Image Sequence Erihaneement.- 4.1 Temporal Filtering.- 4.1.1 Straight Temporal Filtering.- 4.1.2 Motion-Compensated Temporal Filtering.- 4.2 Temporal Filtering with Motion Compensation by Matching.- 4.2.1 Motion Estimation by Matching.- 4.2.2 Experiment Results of Filtering.- 4.2.3 Discussions.- 4.3 Temporal Filtering with Motion Compensation by the Method of Differentials.- 4.3.1 Motion Estimation by the Method of Differentials.- 4.3.2 Various Factors Influencing Motion Estimation.- 4.3.3 Experimental Results of Filtering.- 4.3.4 Discussions.- 4.4 Summary.- References.- 5. Image Region Extraction of Moving Objects.- 5.1 Overview.- 5.1.1 Symbolic Description.- 5.1.2 Sequences.- 5.1.3 Planning.- 5.2 Vector Field.- 5.2.1 Sampli ng.- 5.2.2 Noise.- 5.2.3 Motion Effects.- 5.2.4 Plane Equation.- 5.3 Region Extraction.- 5.3.1 Node Consistency.- 5.3.2 Arc Consistency.- 5.3.3 Region Attributes.- 5.3.4 Example.- 5.4 Sequences.- 5.4.1 Similarity.- 5.4.2 Identity.- 5.4.3 Simple Sequences.- 5.4.4 Compound Sequences.- 5.5 Planning.- 5.6 Resume.- 5.6.1 Hierarchy.- 5.6.2 Outlook.- References.- 6. Analyzing Dynamic Scenes Containing Multiple Moving Objects.- 6.1 Occlusion in General.- 6.1.1 Arbitrary Images.- 6.1.2 Scene Domain Imposed Constraints.- 6.1.3 Occlusion in Image Sequences.- 6.2 Dot Pattern Analysis.- 6.2.1 Combined Motion and Correspondence Processes.- 6.2.2 Separate Correspondence Determination.- 6.2.3 Motion Analysis Given Dot Correspondence.- 6.3 Edge and Boundary Analysis.- 6.3.1 Straight Edge Domain.- 6.3.2 Curvilinear Boundary Domain.- 6.4 Conclusion.- References.- III Medical Applications.- 7. Processing of Medical Image Sequences.- 7.1 Extraction of Measurements from Image Time Sequences.- 7.1.1 Left Ventricular Shape-Versus-Time Determination.- a) Determination of Approximate Ventricular Boundaries by Motion Extraction.- b) Threshold.- c) Boundary Extraction.- 7.1.2 Determination of Precise Ventricle Boundaries Using Prediction Techniques.- a) Absolute Gradient Maximum.- b) Local Gradient Maximum ".- c) Four-Feature Majority Voting.- d) Special Condition to Ignore Outer Heart Wall.- e) Postprocessing.- 7.1.3 Results.- 7.1.4 Videodensitometry.- 7.2 Functional Images.- 7.3 Image Enhancement.- 7.3.1 Motion Deblurring.- 7.3.2 Long-Term Change Detection.- 7.4 Spatial Sequence.- 7.4.1 Electron and Light Micrograph Series.- 7.4.2 Series of Ultrasonic Data.- 7.4.3 Stacks of Computerized Tomograms.- 7.5 Frequency Series.- 7.6 Summary.- References.- Additional References.