A Novel Design and Modeling Paradigm for Memristor-Based Crossbar Circuits

Over 30 years ago L. Chua proposed the existence of a new class of passive circuit elements, which he called memristors and memristive devices. The unique electrical characteristics associated with them, along with the advantages of crossbar structures, have the potential to revolutionize computing architectures. A well-defined and effective memristor model for circuit design combined with a design paradigm based on well-understood underlying logic design principles would certainly accelerate research on nanoscale circuits and systems. Toward this goal, we propose a memristor crossbar circuit design paradigm in which memristors are modeled using the quantum mechanical phenomenon of tunneling. We use this circuit model to design and simulate various logic circuit designs capable of universal computation. Finally, we develop and present a new design paradigm for memristor-based crossbar circuits.

[1]  Dmitri B Strukov,et al.  Four-dimensional address topology for circuits with stacked multilayer crossbar arrays , 2009, Proceedings of the National Academy of Sciences.

[2]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[3]  R. Stanley Williams,et al.  CMOS-like logic in defective, nanoscale crossbars , 2004 .

[4]  Lin Zhong,et al.  Nanowire Crossbar Logic and Standard Cell-Based Integration , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[5]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[6]  Peng Li,et al.  Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  H. Y. Lee,et al.  Excellent resistive switching memory: Influence of GeOx in WOx mixture , 2012, Proceedings of Technical Program of 2012 VLSI Technology, System and Application.

[9]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[10]  Tae Geun Kim,et al.  Stable Bipolar Resistive Switching Characteristics and Resistive Switching Mechanisms Observed in Aluminum Nitride-based ReRAM Devices , 2011, IEEE Transactions on Electron Devices.

[11]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[12]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[13]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[14]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[15]  Yi Wang,et al.  Engineering oxide resistive switching materials for memristive device application , 2011 .

[16]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[17]  Kyoung-Rok Cho,et al.  Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[19]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[20]  R. Williams,et al.  How We Found The Missing Memristor , 2008, IEEE Spectrum.

[21]  Said F. Al-Sarawi,et al.  An Analytical Approach for Memristive Nanoarchitectures , 2011, IEEE Transactions on Nanotechnology.

[22]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[23]  Tung-Ming Pan,et al.  Improved Resistance Switching Characteristics in Ti-Doped $\hbox{Yb}_{2}\hbox{O}_{3}$ for Resistive Nonvolatile Memory Devices , 2012, IEEE Electron Device Letters.

[24]  W. Lu,et al.  Programmable Resistance Switching in Nanoscale Two-terminal Devices , 2008 .

[25]  L. Chua Memristor-The missing circuit element , 1971 .

[26]  Wei Lu,et al.  Two-terminal resistive switches (memristors) for memory and logic applications , 2011, 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011).

[27]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[28]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[29]  Mircea R. Stan,et al.  CMOS/nano co-design for crossbar-based molecular electronic systems , 2003 .

[30]  P. Mazumder,et al.  Self-Controlled Writing and Erasing in a Memristor Crossbar Memory , 2011, IEEE Transactions on Nanotechnology.

[31]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[32]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[33]  N. Xu,et al.  Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories , 2008 .

[34]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[35]  R. Williams,et al.  Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. , 2009, Small.

[36]  Seth Copen Goldstein,et al.  Molecular electronics: from devices and interconnect to circuits and architecture , 2003, Proc. IEEE.

[37]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[38]  P. Vontobel,et al.  Writing to and reading from a nano-scale crossbar memory based on memristors , 2009, Nanotechnology.

[39]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[40]  A. Messiah Quantum Mechanics , 1961 .

[41]  D. Batas,et al.  A Memristor SPICE Implementation and a New Approach for Magnetic Flux-Controlled Memristor Modeling , 2011, IEEE Transactions on Nanotechnology.