Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach

We have investigated multi-temporal polarimetric synthetic aperture radar (SAR) data for urban land-cover classification using an object-based support vector machine (SVM) in combinations of rules. Six-date RADARSAT-2 high-resolution polarimetric SAR data in both ascending and descending passes were acquired in the rural–urban fringe of the Greater Toronto Area during the summer of 2008. The major land-use/land-cover classes include high-density residential areas, low-density residential areas, industrial and commercial areas, construction sites, parks, golf courses, forests, pasture, water, and two types of agricultural crops. Various polarimetric SAR parameters were evaluated for urban land-cover mapping and they include the parameters from Pauli, Freeman and Cloude–Pottier decompositions, the coherency matrix, intensities of each polarization, and their logarithm forms. The multi-temporal SAR polarimetric features were classified first using an SVM classifier. Then specific rules were developed to improve the SVM classification results by extracting major roads and streets using shape features and contextual information. For the comparison of the polarimetric SAR parameters, the best classification performance was achieved using the compressed logarithmic filtered Pauli parameters. For the evaluation of the multi-temporal SAR data set, the best classification result was achieved using all six-date data (kappa = 0.91), while very good classification results (kappa = 0.86) were achieved using only three-date polarimetric SAR data. The results indicate that the combination of both the ascending and the descending polarimetric SAR data with an appropriate temporal span is suitable for urban land-cover mapping.

[1]  Bambang H. Trisasongko,et al.  The Use of Polarimetric SAR Data for Forest Disturbance Monitoring , 2010 .

[2]  Imdad Ali Rizvi,et al.  Comparison of CBF, ANN and SVM classifiers for object based classification of high resolution satellite images , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Yifang Ban,et al.  Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: object-based and knowledge-based approach , 2010 .

[4]  Paolo Gamba,et al.  Robust Extraction of Urban Area Extents in HR and VHR SAR Images , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[5]  C. Ticehurst,et al.  Radar backscatter analysis for urban environments , 1997 .

[6]  Yifang Ban,et al.  Multitemporal RADARSAT-2 Polarimetric SAR Data for Urban Land Cover Classification Using Support Vector Machine , 2010 .

[7]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[8]  Jean-Claude Souyris,et al.  Support Vector Machine for Multifrequency SAR Polarimetric Data Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[10]  Jay Gao,et al.  Quantification of grassland properties: how it can benefit from geoinformatic technologies? , 2006 .

[11]  Paolo Gamba,et al.  Multitemporal/multiband SAR classification of urban areas using spatial analysis: statistical versus neural kernel-based approach , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  Shengli Zhou,et al.  Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM , 2009, OCEANS 2009.

[13]  Pierfrancesco Lombardo,et al.  Optimum model-based segmentation techniques for multifrequency polarimetric SAR images of urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  Yifang Ban,et al.  RADARSAT SAR data for landuse/land-cover classification in the rural-urban fringe of the greater Toronto area , 2005 .

[15]  Giuseppe Satalino,et al.  Comparison of polarimetric SAR observables in terms of classification performance , 2008 .

[16]  Björn Waske,et al.  Classifying Multilevel Imagery From SAR and Optical Sensors by Decision Fusion , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Paul M. Mather,et al.  Support vector machines for classification in remote sensing , 2005 .

[18]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  F. M. Danson,et al.  Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .

[20]  Lamei Zhang,et al.  Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features , 2010, EURASIP J. Adv. Signal Process..

[21]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  A. Tzotsos,et al.  Support Vector Machine Classification for Object-Based Image Analysis , 2008 .

[23]  Oleksiy B. Pogrebnyak,et al.  Approaches to Classification of Multichannel Images , 2006, CIARP.

[24]  A. Agresti An introduction to categorical data analysis , 1997 .

[25]  Zhang Xiangmin,et al.  Comparison of pixel‐based and object‐oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China , 2006 .

[26]  Yifang Ban,et al.  Urban land use/land cover mapping with high-resolution SAR imagery by integrating support vector machines into object-based analysis , 2008, Remote Sensing.

[27]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[28]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[29]  J. S. Lee,et al.  Polarimetric SAR characterization of man-made structures in urban areas using normalized circular-pol correlation coefficients , 2008 .

[30]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[31]  C. Woodcock,et al.  Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data , 2012 .

[32]  John Kelly,et al.  Evaluation and Bias Removal of Multilook Effect on Entropy/Alpha/Anisotropy in Polarimetric SAR Decomposition , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Arno Schäpe,et al.  Multiresolution Segmentation : an optimization approach for high quality multi-scale image segmentation , 2000 .

[34]  V. Alberga,et al.  A study of land cover classification using polarimetric SAR parameters , 2007 .

[35]  Miguel Figueroa,et al.  Competitive learning with floating-gate circuits , 2002, IEEE Trans. Neural Networks.

[36]  Yifang Ban,et al.  Urban Land-use Mapping and Change Detection with RADARSAT Fine-Beam SAR Data Using Neural Network and Rule-based Classifiers , 2008 .

[37]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[38]  Laurent Ferro-Famil,et al.  Building characterization using L-band polarimetric interferometric SAR data , 2005, IEEE Geoscience and Remote Sensing Letters.

[39]  Huadong Guo,et al.  Urban land cover classification with high-resolution polarimetric SAR interferometric data , 2010 .

[40]  E. Wolff,et al.  Textural and contextual land-cover classification using single and multiple classifier systems , 2002 .

[41]  Sun Hong Classification of Polarimetric SAR Image Based on Four-component Scattering Model , 2009 .

[42]  Y. Ban Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops , 2003 .

[43]  D. Sloane,et al.  An Introduction to Categorical Data Analysis , 1996 .

[44]  Heather McNairn,et al.  The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[46]  Jon Atli Benediktsson,et al.  Fusion of Support Vector Machines for Classification of Multisensor Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Rama Chellappa,et al.  Unsupervised segmentation of polarimetric SAR data using the covariance matrix , 1992, IEEE Trans. Geosci. Remote. Sens..

[48]  T. M. Pellizzeri,et al.  Classification of polarimetric SAR images of suburban areas using joint annealed segmentation and “H/A/α” polarimetric decomposition , 2003 .

[49]  Yifang Ban,et al.  Satellite Monitoring of Urban Sprawl and Assessing the Impact of Land-Cover Changes in the Greater Toronto Area , 2008 .

[50]  Barnali M. Dixon,et al.  Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? , 2008 .

[51]  Seiho Uratsuka,et al.  A study on extraction of urban areas from polarimetric Synthetic Aperture Radar image , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[52]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[53]  Paolo Gamba,et al.  Improvements to urban area characterization using multitemporal and multiangle SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..