Cell-cell signaling during synapse formation in the CNS.

Synapses join individual nerve cells into a functional network. Specific cell-cell signaling events regulate synapse formation during development and thereby generate a highly reproducible connectivity pattern. The accuracy of this process is fundamental for normal brain function, and aberrant connectivity leads to nervous system disorders. However, despite the overall precision with which neuronal circuits are formed, individual synapses and synaptic networks are also plastic and can readily adapt to external stimuli or perturbations. In recent studies, several trans-synaptic signaling systems have been identified that can mediate various aspects of synaptic differentiation in the central nervous system. It appears that these individual pathways functionally cooperate, thereby generating robustness and flexibility, which ensure normal nervous system function.

[1]  V. Hamburger,et al.  Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. , 1949, The Journal of experimental zoology.

[2]  Synaptic Remodeling in Agranular Cerebella , 1982 .

[3]  C. Mason,et al.  Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  M. Takeichi,et al.  The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. , 1988, Development.

[5]  J. E. Vaughn,et al.  Fine structure of synaptogenesis in the vertebrate central nervous system. , 1989, Synapse.

[6]  James E. Vaughn,et al.  Review: Fine structure of synaptogenesis in the vertebrate central nervous system , 1989 .

[7]  T. Südhof,et al.  Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. , 1992, Science.

[8]  R. Heimark,et al.  Protocadherins: a large family of cadherin‐related molecules in central nervous system. , 1993, The EMBO journal.

[9]  T. Yagi,et al.  A role for Fyn tyrosine kinase in the suckling behaviour of neonatal mice , 1993, Nature.

[10]  H. Peng,et al.  Elevation in presynaptic Ca2+ level accompanying initial nerve-muscle contact in tissue culture , 1993, Neuron.

[11]  D. Raible,et al.  Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones , 1993, Cell.

[12]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[13]  C. Goodman,et al.  The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules , 1993, Cell.

[14]  S. Kater,et al.  Neuron-muscle contact changes presynaptic resting calcium set-point. , 1993, Developmental biology.

[15]  C. Goodman,et al.  Semaphorin II can function as a selective inhibitor of specific synaptic arborizations , 1995, Cell.

[16]  T. Südhof,et al.  Neuroligin 1: A splice site-specific ligand for β-neurexins , 1995, Cell.

[17]  Peter D. Kwong,et al.  Structural basis of cell-cell adhesion by cadherins , 1995, Nature.

[18]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[19]  D. Chang,et al.  ARIA is concentrated in nerve terminals at neuromuscular junctions and at other synapses , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[21]  T. Pawson,et al.  Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands , 1996, Nature.

[22]  T. Südhof,et al.  CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  D. Cerretti,et al.  Cell-Cell Adhesion Mediated by Binding of Membrane-anchored Ligand LERK-2 to the EPH-related Receptor Human Embryonal Kinase 2 Promotes Tyrosine Kinase Activity* , 1996, The Journal of Biological Chemistry.

[24]  T. Südhof,et al.  Structures, Alternative Splicing, and Neurexin Binding of Multiple Neuroligins (*) , 1996, The Journal of Biological Chemistry.

[25]  D. Colman,et al.  A Model for Central Synaptic Junctional Complex Formation Based on the Differential Adhesive Specificities of the Cadherins , 1996, Neuron.

[26]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[27]  C. Goodman,et al.  The Molecular Biology of Axon Guidance , 1996, Science.

[28]  M. Takeichi,et al.  The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones , 1996, The Journal of cell biology.

[29]  C. Barnes,et al.  Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  P. Salinas,et al.  WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. , 1997, Developmental biology.

[31]  T. Südhof,et al.  Binding of neuroligins to PSD-95. , 1997, Science.

[32]  A. Represa,et al.  NCAM Is Essential for Axonal Growth and Fasciculation in the Hippocampus , 1997, Molecular and Cellular Neuroscience.

[33]  E. Pasquale,et al.  Tyrosine Phosphorylation of Transmembrane Ligands for Eph Receptors , 1997, Science.

[34]  M. Itoh,et al.  Afadin: A Novel Actin Filament–binding Protein with One PDZ Domain Localized at Cadherin-based Cell-to-Cell Adherens Junction , 1997, The Journal of cell biology.

[35]  Natalya I. Bushmanova Running symphony through cacophony , 1997 .

[36]  Michael Sasner,et al.  Neuregulin-β induces expression of an NMDA-receptor subunit , 1997, Nature.

[37]  G. Fischbach,et al.  ARIA: a neuromuscular junction neuregulin. , 1997, Annual review of neuroscience.

[38]  C. Mason,et al.  Axon-target interactions in the developing cerebellum. , 1997, Perspectives on developmental neurobiology.

[39]  T. Südhof,et al.  Binding Properties of Neuroligin 1 and Neurexin 1β Reveal Function as Heterophilic Cell Adhesion Molecules* , 1997, The Journal of Biological Chemistry.

[40]  P. Mermelstein,et al.  CIPP, a Novel Multivalent PDZ Domain Protein, Selectively Interacts with Kir4.0 Family Members, NMDA Receptor Subunits, Neurexins, and Neuroligins , 1998, Molecular and Cellular Neuroscience.

[41]  D. Bredt,et al.  PDZ Proteins Organize Synaptic Signaling Pathways , 1998, Cell.

[42]  Masahiko Watanabe,et al.  Diversity Revealed by a Novel Family of Cadherins Expressed in Neurons at a Synaptic Complex , 1998, Neuron.

[43]  C. Goodman,et al.  Genetic Analysis of the Mechanisms Controlling Target Selection: Complementary and Combinatorial Functions of Netrins, Semaphorins, and IgCAMs , 1998, Cell.

[44]  Ronald L. Davis,et al.  Integrin-mediated short-term memory in Drosophila , 1998, Nature.

[45]  U. Rutishauser,et al.  Removal of Polysialic Acid–Neural Cell Adhesion Molecule Induces Aberrant Mossy Fiber Innervation and Ectopic Synaptogenesis in the Hippocampus , 1998, The Journal of Neuroscience.

[46]  J G Flanagan,et al.  The ephrins and Eph receptors in neural development. , 1998, Annual review of neuroscience.

[47]  A. Carleton,et al.  Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Contact-dependent regulation of N-type calcium channel subunits during synaptogenesis. , 1998, Journal of neurobiology.

[49]  R. Weinberg,et al.  Direct Interaction of CASK/LIN-2 and Syndecan Heparan Sulfate Proteoglycan and Their Overlapping Distribution in Neuronal Synapses , 1998, The Journal of cell biology.

[50]  Dallas E. Kroon,et al.  Identification of an Evolutionarily Conserved Heterotrimeric Protein Complex Involved in Protein Targeting* , 1998, The Journal of Biological Chemistry.

[51]  R. Goold,et al.  Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. , 1998, Journal of cell science.

[52]  A. Ebens,et al.  Human Semaphorin K1 Is Glycosylphosphatidylinositol-linked and Defines a New Subfamily of Viral-related Semaphorins* , 1998, The Journal of Biological Chemistry.

[53]  R. Huganir,et al.  PDZ Proteins Bind, Cluster, and Synaptically Colocalize with Eph Receptors and Their Ephrin Ligands , 1998, Neuron.

[54]  T. Südhof,et al.  The Making of Neurexins , 1998, Journal of neurochemistry.

[55]  Chou P Hung,et al.  A Role for the Cadherin Family of Cell Adhesion Molecules in Hippocampal Long-Term Potentiation , 1998, Neuron.

[56]  C. Shatz,et al.  Many Major CNS Axon Projections Develop Normally in the Absence of Semaphorin III , 1998, Molecular and Cellular Neuroscience.

[57]  T. Südhof,et al.  A Tripartite Protein Complex with the Potential to Couple Synaptic Vesicle Exocytosis to Cell Adhesion in Brain , 1998, Cell.

[58]  S. Burden The formation of neuromuscular synapses. , 1998, Genes & development.

[59]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[60]  M. Poo,et al.  Unified Nomenclature for the Semaphorins/Collapsins , 1999, Cell.

[61]  C. Redies,et al.  Cadherins and synaptic specificity , 1999, Journal of neuroscience research.

[62]  T. Maniatis,et al.  A Striking Organization of a Large Family of Human Neural Cadherin-like Cell Adhesion Genes , 1999, Cell.

[63]  David R. Colman,et al.  The Diversity of Cadherins and Implications for a Synaptic Adhesive Code in the CNS , 1999, Neuron.

[64]  T. Yagi,et al.  Proteins of the CNR Family Are Multiple Receptors for Reelin , 1999, Cell.

[65]  C. Hovens,et al.  The Junction-associated Protein AF-6 Interacts and Clusters with Specific Eph Receptor Tyrosine Kinases at Specialized Sites of Cell–Cell Contact in the Brain , 1999, The Journal of cell biology.

[66]  J. Sanes,et al.  Development of the vertebrate neuromuscular junction. , 1999, Annual review of neuroscience.

[67]  A. Ferreira,et al.  Abnormal synapse formation in agrin-depleted hippocampal neurons. , 1999, Journal of cell science.

[68]  T. Südhof,et al.  Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[70]  M. Abbott,et al.  The Insulin Receptor Tyrosine Kinase Substrate p58/53 and the Insulin Receptor Are Components of CNS Synapses , 1999, The Journal of Neuroscience.

[71]  O. Steward,et al.  Synaptic Clustering of AMPA Receptors by the Extracellular Immediate-Early Gene Product Narp , 1999, Neuron.

[72]  T. Südhof,et al.  Association of Neuronal Calcium Channels with Modular Adaptor Proteins* , 1999, The Journal of Biological Chemistry.

[73]  S. Rabacchi,et al.  Collapsin-1/Semaphorin-III/D Is Regulated Developmentally in Purkinje Cells and Collapses Pontocerebellar Mossy Fiber Neuronal Growth Cones , 1999, The Journal of Neuroscience.

[74]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[75]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[76]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[77]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[78]  C. Garner,et al.  Molecular determinants of presynaptic active zones , 2000, Current Opinion in Neurobiology.

[79]  R. Huganir,et al.  PDZ domains in synapse assembly and signalling. , 2000, Trends in cell biology.

[80]  J. Lichtman,et al.  Synapse Elimination and Indelible Memory , 2000, Neuron.

[81]  A. Hall,et al.  Axonal Remodeling and Synaptic Differentiation in the Cerebellum Is Regulated by WNT-7a Signaling , 2000, Cell.

[82]  K. Tachibana,et al.  Two Cell Adhesion Molecules, Nectin and Cadherin, Interact through Their Cytoplasmic Domain–Associated Proteins , 2000, The Journal of cell biology.

[83]  T. Südhof,et al.  Mints as Adaptors , 2000, The Journal of Biological Chemistry.

[84]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[85]  Michael E Greenberg,et al.  EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation , 2000, Cell.

[86]  G. Davis,et al.  Drosophila Futsch/22C10 Is a MAP1B-like Protein Required for Dendritic and Axonal Development , 2000, Neuron.

[87]  Stephen J. Smith,et al.  Filopodia, Spines, and the Generation of Synaptic Diversity , 2000, Neuron.

[88]  C. Shatz,et al.  Functional requirement for class I MHC in CNS development and plasticity. , 2000, Science.

[89]  K. Tachibana,et al.  Nectin-3, a New Member of Immunoglobulin-like Cell Adhesion Molecules That Shows Homophilic and Heterophilic Cell-Cell Adhesion Activities* , 2000, The Journal of Biological Chemistry.

[90]  K. Tachibana,et al.  Interaction of Nectin with Afadin Is Necessary for Its Clustering at Cell-Cell Contact Sites but Not for Itscis Dimerization or trans Interaction* , 2000, The Journal of Biological Chemistry.

[91]  O. Bozdagi,et al.  Increasing Numbers of Synaptic Puncta during Late-Phase LTP N-Cadherin Is Synthesized, Recruited to Synaptic Sites, and Required for Potentiation , 2000, Neuron.

[92]  David R. Colman,et al.  Molecular Modification of N-Cadherin in Response to Synaptic Activity , 2000, Neuron.

[93]  G. Davis,et al.  Drosophila Futsch Regulates Synaptic Microtubule Organization and Is Necessary for Synaptic Growth , 2000, Neuron.

[94]  D. Yang,et al.  Regulation of Neuregulin Signaling by PSD-95 Interacting with ErbB4 at CNS Synapses , 2000, Neuron.

[95]  R. Longhi,et al.  Mammalian LIN‐7 PDZ proteins associate with β‐catenin at the cell–cell junctions of epithelia and neurons , 2000, The EMBO journal.

[96]  R. Klein,et al.  Excitatory Eph receptors and adhesive ephrin ligands. , 2001, Current opinion in cell biology.

[97]  E. Pasquale,et al.  EphB/Syndecan-2 Signaling in Dendritic Spine Morphogenesis , 2001, Neuron.

[98]  T. Südhof,et al.  CASK and Protein 4.1 Support F-actin Nucleation on Neurexins* , 2001, The Journal of Biological Chemistry.

[99]  M. Dalva,et al.  Modulation of NMDA Receptor- Dependent Calcium Influx and Gene Expression Through EphB Receptors , 2001, Science.

[100]  David R. Colman,et al.  Molecules, maps and synapse specificity , 2001, Nature Reviews Neuroscience.

[101]  M. Krug,et al.  Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, beta1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus. , 2001, Journal of neurobiology.

[102]  G. Davis,et al.  Maintaining the stability of neural function: a homeostatic hypothesis. , 2001, Annual review of physiology.

[103]  G. Westbrook,et al.  Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse , 2001, Nature.

[104]  T. Bonhoeffer,et al.  Kinase-Independent Requirement of EphB2 Receptors in Hippocampal Synaptic Plasticity , 2001, Neuron.

[105]  B. Gumbiner,et al.  Adhesion signaling: How β-catenin interacts with its partners , 2001, Current Biology.

[106]  T. Pawson,et al.  The Receptor Tyrosine Kinase EphB2 Regulates NMDA-Dependent Synaptic Function , 2001, Neuron.

[107]  Berta Alsina,et al.  Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF , 2001, Nature Neuroscience.

[108]  U. Rutishauser,et al.  Regulation of Cell Adhesion by Polysialic Acid , 2001, The Journal of Biological Chemistry.

[109]  P. Camilli,et al.  Glutamate regulates actin-based motility in axonal filopodia , 2001, Nature Neuroscience.

[110]  B. Eickholt,et al.  An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling , 2002, The Journal of cell biology.

[111]  S. Heinemann,et al.  Trans-Synaptic Eph Receptor-Ephrin Signaling in Hippocampal Mossy Fiber LTP , 2002, Science.

[112]  I. Bezprozvanny,et al.  Synaptic Targeting of N-Type Calcium Channels in Hippocampal Neurons , 2002, The Journal of Neuroscience.

[113]  Tom Maniatis,et al.  Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. , 2002, Molecular cell.

[114]  U. Tepass,et al.  Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. , 2002, Current opinion in genetics & development.

[115]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[116]  R. O’Brien,et al.  Synaptically Targeted Narp Plays an Essential Role in the Aggregation of AMPA Receptors at Excitatory Synapses in Cultured Spinal Neurons , 2002, The Journal of Neuroscience.

[117]  N. Perrimon,et al.  The Promise and Perils of Wnt Signaling Through β-Catenin , 2002, Science.

[118]  N. Perrimon,et al.  The promise and perils of Wnt signaling through beta-catenin. , 2002, Science.

[119]  Tom Maniatis,et al.  Promoter Choice Determines Splice Site Selection in Protocadherin α and γ Pre-mRNA Splicing , 2002 .

[120]  M. Takeichi,et al.  Cadherin Regulates Dendritic Spine Morphogenesis , 2002, Neuron.

[121]  Yishi Jin,et al.  Synaptogenesis: insights from worm and fly , 2002, Current Opinion in Neurobiology.

[122]  Y. Takai,et al.  Nectin: an adhesion molecule involved in formation of synapses. , 2002, The Journal of cell biology.

[123]  E. Cooper,et al.  Agrin plays an organizing role in the formation of sympathetic synapses , 2002, The Journal of cell biology.

[124]  E. Schuman,et al.  Depolarization Drives β-Catenin into Neuronal Spines Promoting Changes in Synaptic Structure and Function , 2002, Neuron.

[125]  A. Bradley,et al.  Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model. , 2002, Genes & development.

[126]  C. Goodman,et al.  Bi-directional signaling by Semaphorin 1a during central synapse formation in Drosophila , 2002, Nature Neuroscience.

[127]  M. Rubio,et al.  Polysialic acid and the formation of oculomotor synapses on chick ciliary neurons , 2002, The Journal of comparative neurology.

[128]  Michael Loran Dustin,et al.  Neural and Immunological Synaptic Relations , 2002, Science.

[129]  T. Südhof,et al.  SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly , 2002, Science.

[130]  L. Reichardt,et al.  TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum , 2002, Nature Neuroscience.

[131]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[132]  E. Schuman,et al.  Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. , 2002, Neuron.