Domain Decomposition Algorithms for Two Dimensional Linear Schrödinger Equation
暂无分享,去创建一个
[1] Véronique Martin,et al. An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions , 2004 .
[2] Frédéric Nataf,et al. FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .
[3] Martin J. Gander,et al. Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..
[4] Yanzhi Zhang,et al. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates , 2013, SIAM J. Sci. Comput..
[5] Jérémie Szeftel,et al. Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation , 2007, Math. Comput..
[6] Christophe Besse,et al. A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .
[7] Martin J. Gander,et al. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations , 2010, Networks Heterog. Media.
[8] Christophe Geuzaine,et al. A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations , 2015, J. Comput. Phys..
[9] David E. Keyes,et al. Additive Schwarz Methods for Hyperbolic Equations , 1998 .
[10] Martin J. Gander,et al. Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems , 2007, SIAM J. Numer. Anal..
[11] Martin J. Gander,et al. Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..
[12] Xiao-Chuan Cai,et al. Multiplicative Schwarz Methods for Parabolic Problems , 1994, SIAM J. Sci. Comput..
[13] Martin J. Gander,et al. Schwarz Methods over the Course of Time , 2008 .
[14] Christophe Besse,et al. Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .
[15] Hua Xiang,et al. A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..
[16] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[17] Christophe Besse,et al. Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential , 2013, Numerische Mathematik.
[18] Christian Cabos. Error Bounds for Dynamic Responses in Forced Vibration Problems , 1994, SIAM J. Sci. Comput..
[19] Christophe Geuzaine,et al. GetDDM: An open framework for testing optimized Schwarz methods for time-harmonic wave problems , 2016, Comput. Phys. Commun..
[20] Martin J. Gander,et al. Optimized Schwarz Methods for Maxwell's Equations , 2006, SIAM J. Sci. Comput..
[21] Jérôme Jaffré,et al. Space-Time Domain Decomposition Methods for Diffusion Problems in Mixed Formulations , 2013, SIAM J. Numer. Anal..
[22] Laurence Halpern,et al. Optimized and Quasi-optimal Schwarz Waveform Relaxation for the One Dimensional Schrödinger Equation , 2010 .
[23] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[24] Christophe Geuzaine,et al. A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation , 2012, J. Comput. Phys..
[25] Christophe Besse,et al. Schwarz waveform relaxation method for one-dimensional Schrödinger equation with general potential , 2016, Numerical Algorithms.
[26] Matthew G. Knepley,et al. PETSc Users Manual (Rev. 3.4) , 2014 .
[27] David Lannes,et al. The Water Waves Problem: Mathematical Analysis and Asymptotics , 2013 .
[28] Xavier Antoine,et al. Domain decomposition methods and high-order absorbing boundary conditions for the numerical simulation of the time dependent Schrödinger equation with ionization and recombination by intense electric field , 2014 .
[29] Christophe Besse,et al. Absorbing Boundary Conditions for the Two-Dimensional Schrödinger Equation with an Exterior Potential. Part I: Construction and a priori Estimates , 2012 .