Silicon Inverse‐Opal‐Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries

Several types of silicon‐based inverse‐opal films are synthesized, characterized by a range of experimental techniques, and studied in terms of electrochemical performance. Amorphous silicon inverse opals are fabricated via chemical vapor deposition. Galvanostatic cycling demonstrates that these materials possess high capacities and reasonable capacity retentions. Amorphous silicon inverse opals perform unsatisfactorily at high rates due to the low conductivity of silicon. The conductivity of silicon inverse opals can be improved by their crystallization. Nanocrystalline silicon inverse opals demonstrate much better rate capabilities but the capacities fade to zero after several cycles. Silicon–carbon composite inverse‐opal materials are synthesized by depositing a thin layer of carbon via pyrolysis of a sucrose‐based precursor onto the silicon inverse opals. The amount of carbon deposited proves to be insufficient to stabilize the structures and silicon–carbon composites demonstrate unsatisfactory electrochemical behavior. Carbon inverse opals are coated with amorphous silicon producing another type of macroporous composite. These electrodes demonstrate significant improvement both in capacity retentions and in rate capabilities. The inner carbon matrix not only increases the material conductivity but also results in lower silicon pulverization during cycling.

[1]  M. Hara,et al.  Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4 , 2009 .

[2]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[3]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[4]  K. Kanamura,et al.  Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries , 2007 .

[5]  Ling Huang,et al.  Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries , 2007 .

[6]  Q. Cao,et al.  Preparation and characterization of three-dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery , 2007 .

[7]  J. Tarascon,et al.  Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .

[8]  Ling Huang,et al.  Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries , 2007 .

[9]  T. Kudo,et al.  High Power Battery Electrodes Using Nanoporous V2O5/Carbon Composites , 2007 .

[10]  X. Qiu,et al.  Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery , 2007 .

[11]  Doron Aurbach,et al.  Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes , 2007 .

[12]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[13]  Ling Huang,et al.  Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries , 2007 .

[14]  Andreas Stein,et al.  Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon−Carbon Nanocomposites , 2006 .

[15]  K. Kanamura,et al.  Preparation of Three Dimensionally Ordered Macroporous Li4Ti5O12 Electrode , 2006 .

[16]  Geoffrey A. Ozin,et al.  Amplified Photochemistry with Slow Photons , 2006 .

[17]  Ying Wang,et al.  Electrochemical Characterization of a Three Dimensionally Ordered Macroporous Anatase TiO2 Electrode , 2006 .

[18]  K. Poeppelmeier,et al.  Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties , 2006 .

[19]  Zilong Tang,et al.  Preparation of LiFePO4 with inverse opal structure and its satisfactory electrochemical properties , 2005 .

[20]  H. Suzuki,et al.  Biosensing capability of gold-nanoparticle- immobilized three-dimensionally ordered macroporous film , 2005 .

[21]  J. Zeng,et al.  Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. , 2005, The journal of physical chemistry. B.

[22]  Justin C. Lytle,et al.  Effect of a Macropore Structure on Cycling Rates of LiCoO2 , 2005 .

[23]  Nicholas A. Kotov,et al.  A floating self-assembly route to colloidal crystal templates for 3D cell scaffolds , 2005 .

[24]  Justin C. Lytle,et al.  Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium‐Ion Secondary Batteries , 2005 .

[25]  G. Ozin,et al.  Colloidal Crystal Capillary Columns—Towards Optical Chromatography , 2005 .

[26]  T. Kudo,et al.  Interconnected macroporous TiO2 (anatase) as a lithium insertion electrode material , 2004 .

[27]  T. Kudo,et al.  Porous TiO2 (anatase) Electrodes for High-Power Batteries , 2004 .

[28]  L. Kavan,et al.  Lithium Insertion into Anatase Inverse Opal , 2004 .

[29]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[30]  Justin C. Lytle,et al.  Structural and electrochemical properties of three-dimensionally ordered macroporous tin(IV) oxide films , 2004 .

[31]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[32]  D. Norris,et al.  Avoiding cracks in self-assembled photonic band-gap crystals , 2003, cond-mat/0312403.

[33]  J. DiMaio,et al.  Novel network polymer for templated carbon photonic crystal structures , 2003 .

[34]  Bruno Scrosati,et al.  Structured Silicon Anodes for Lithium Battery Applications , 2003 .

[35]  Geoffrey A. Ozin,et al.  Self‐Assembled Surface Patterns of Binary Colloidal Crystals , 2003 .

[36]  F. Caruso,et al.  Conjugated Polymer Inverse Opals for Potentiometric Biosensing , 2002 .

[37]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[38]  Jong‐Sung Yu,et al.  Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. , 2002, Journal of the American Chemical Society.

[39]  Geoffrey A. Ozin,et al.  Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors , 2001 .

[40]  Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry , 2001 .

[41]  L. Francis,et al.  In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure , 2001 .

[42]  K. Yoshino,et al.  Electrochemical properties of macroporous carbon for electrodes of lithium-ion batteries , 2001 .

[43]  B. J. Melde,et al.  Direct Synthesis of Ordered Macroporous Silica Materials Functionalized with Polyoxometalate Clusters , 2001 .

[44]  Y. Vlasov,et al.  Conjugated-polymer photonic crystals , 2000 .

[45]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[46]  A. Stein,et al.  A chemical synthesis of periodic macroporous NiO and metallic Ni , 1999 .

[47]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[48]  Baughman,et al.  Carbon structures with three-dimensional periodicity at optical wavelengths , 1998, Science.

[49]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[50]  R. McCreery,et al.  Spatially Resolved Raman Spectroscopy of Carbon Electrode Surfaces: Observations of Structural and Chemical Heterogeneity , 1997 .

[51]  O. Velev,et al.  Porous silica via colloidal crystallization , 1997, Nature.

[52]  H. Giesche Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process , 1994 .

[53]  a-Si technologies for high efficiency solar cells , 1993 .

[54]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .