Moving‐mesh cosmology: characteristics of galaxies and haloes

We discuss cosmological hydrodynamic simulations of galaxy formation performed with the new moving-mesh code AREPO, which promises higher accuracy compared with the traditional smoothed particle hydrodynamics (SPH) technique that has been widely employed for this problem. In this exploratory study, we deliberately limit the complexity of the physical processes followed by the code for ease of comparison with previous calculations, and include only cooling of gas with a primordial composition, heating by a spatially uniform ultraviolet background, and a simple subresolution model for regulating star formation in the dense interstellar medium. We use an identical set of physics in corresponding simulations carried out with the well-tested SPH code GADGET, adopting also the same high-resolution gravity solver. We are thus able to compare both simulation sets on an object-by-object basis, allowing us to cleanly isolate the impact of different hydrodynamical methods on galaxy and halo properties. In accompanying papers, Vogelsberger et al. and Sijacki et al., we focus on an analysis of the global baryonic statistics predicted by the simulation codes, and complementary idealized simulations that highlight the differences between the hydrodynamical schemes. Here we investigate their influence on the baryonic properties of simulated galaxies and their surrounding haloes. We find that AREPO leads to significantly higher star formation rates for galaxies in massive haloes and to more extended gaseous discs in galaxies, which also feature a thinner and smoother morphology than their GADGET counterparts. Consequently, galaxies formed in AREPO have larger sizes and higher specific angular momentum than their SPH correspondents. Interestingly, the more efficient cooling flows in AREPO yield higher densities and lower entropies in halo centres compared to GADGET, whereas the opposite trend is found in halo outskirts. The cooling differences leading to higher star formation rates of massive galaxies in AREPO also slightly increase the baryon content within the virial radius of massive haloes. We show that these differences persist as a function of numerical resolution. While both codes agree to acceptable accuracy on a number of baryonic properties of cosmic structures, our results thus clearly demonstrate that galaxy formation simulations greatly benefit from the use of more accurate hydrodynamical techniques such as AREPO and call into question the reliability of galaxy formation studies in a cosmological context using traditional standard formulations of SPH, such as the one implemented in GADGET. Our new moving-mesh simulations demonstrate that a population of extended gaseous discs of galaxies in large volume cosmological simulations can be formed even without energetic feedback in the form of galactic winds, although such outflows appear required to obtain realistic stellar masses.

[1]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[2]  Carlos S. Frenk,et al.  The diversity and similarity of simulated cold dark matter haloes , 2008, 0810.1522.

[3]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[4]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[5]  U. Cambridge,et al.  On the origin of cores in simulated galaxy clusters , 2008, 0812.1750.

[6]  N. Gnedin Effect of Reionization on Structure Formation in the Universe , 2000, astro-ph/0002151.

[7]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[8]  Chung-Pei Ma,et al.  The baryonic assembly of dark matter haloes , 2011, 1103.0001.

[9]  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[10]  Daniel J. Price Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH , 2007, J. Comput. Phys..

[11]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[12]  Rupert A. C. Croft,et al.  Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyα Forest , 1998 .

[13]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[14]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[15]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[16]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[17]  Dwarf galaxies in voids: suppressing star formation with photoheating , 2005, astro-ph/0501304.

[18]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[19]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[20]  L. Hernquist,et al.  Performance characteristics of tree codes , 1987 .

[21]  Lucio Mayer,et al.  FORMING REALISTIC LATE-TYPE SPIRALS IN A ΛCDM UNIVERSE: THE ERIS SIMULATION , 2011, 1103.6030.

[22]  M. Steinmetz,et al.  The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions , 1999, astro-ph/9906160.

[23]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[24]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[25]  Volker Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001 .

[26]  Neal Katz,et al.  Dissipational galaxy formation. II - Effects of star formation , 1992 .

[27]  James Wadsley,et al.  On the treatment of entropy mixing in numerical cosmology , 2008 .

[28]  Lars Hernquist,et al.  Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations , 2003, astro-ph/0312651.

[29]  O. Agertz,et al.  Resolving mixing in smoothed particle hydrodynamics , 2009, 0906.0774.

[30]  Matthias Steinmetz,et al.  The Effects of a Photoionizing Ultraviolet Background on the Formation of Disk Galaxies , 1996, astro-ph/9605043.

[31]  Liang Gao,et al.  Mass loss of galaxies due to an ultraviolet background , 2008, 0806.0378.

[32]  A. Dekel,et al.  Towards a resolution of the galactic spin crisis: mergers, feedback and spin segregation , 2002, astro-ph/0201187.

[33]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[34]  Tom Abel,et al.  rpSPH: a novel smoothed particle hydrodynamics algorithm , 2010, 1003.0937.

[35]  V. Springel,et al.  Intracluster stars in simulations with active galactic nucleus feedback , 2010, 1001.3018.

[36]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[37]  Junichiro Makino,et al.  A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS , 2012, 1202.4277.

[38]  D. Weinberg,et al.  The Lyman-Alpha Forest in the Cold Dark Matter Model , 1995, astro-ph/9509105.

[39]  J. Read,et al.  SPHS: Smoothed Particle Hydrodynamics with a higher order dissipation switch , 2011, 1111.6985.

[40]  T. Quinn,et al.  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[41]  V. Springel,et al.  A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations , 2010, 1012.1017.

[42]  G. Efstathiou,et al.  Angular momentum from tidal torques , 1987 .

[43]  D. Weinberg,et al.  Photoionization, numerical resolution, and galaxy formation , 1996, astro-ph/9604175.

[44]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[45]  The growth of galaxies in cosmological simulations of structure formation , 2001, astro-ph/0106282.

[46]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[47]  Volker Springel,et al.  The history of star formation in a lcdm universe , 2002, astro-ph/0206395.

[48]  J. Bagla TreePM: A code for cosmological N-body simulations , 1999, astro-ph/9911025.

[49]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[50]  E. Tasker,et al.  A test suite for quantitative comparison of hydrodynamic codes in astrophysics , 2008, 0808.1844.

[51]  Andreas Bauer,et al.  Magnetohydrodynamics on an unstructured moving grid , 2011, 1108.1792.

[52]  Volker Springel,et al.  Particle hydrodynamics with tessellation techniques , 2009, 0912.0629.

[53]  Neal Katz,et al.  Galaxies and Gas in a Cold Dark Matter Universe , 1992 .

[54]  The baryon fraction in hydrodynamical simulations of galaxy clusters , 2005, astro-ph/0509024.

[55]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[56]  Momentum transfer across shear flows in smoothed particle hydrodynamic simulations of galaxy formation , 2003, astro-ph/0306568.

[57]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[58]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .

[59]  S. White,et al.  Galaxies–intergalactic medium interaction calculation – I. Galaxy formation as a function of large-scale environment , 2009, 0906.4350.

[60]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[61]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[62]  J. Peacock,et al.  A Simulation of Galaxy Formation and Clustering , 1999, astro-ph/9905160.

[63]  Jeremiah P. Ostriker,et al.  A piecewise parabolic method for cosmological hydrodynamics , 1995 .

[64]  In-shock cooling in numerical simulations , 1999, astro-ph/9903320.

[65]  The origin of the density distribution of disc galaxies: a new problem for the standard model of disc formation , 2001, astro-ph/0107195.

[66]  Chien Y. Peng,et al.  An Explanation for the Observed Weak Size Evolution of Disk Galaxies , 2006, astro-ph/0612428.

[67]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[68]  J. Makino,et al.  Astrophysics with GRAPE , 2012 .

[69]  S. White,et al.  Galaxy growth in the concordance ΛCDM cosmology , 2007, 0708.1814.

[70]  Jeremiah P. Ostriker,et al.  A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme , 1993 .

[71]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[72]  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 6/22/04 EFFECTS OF COOLING AND STAR FORMATION ON THE BARYON FRACTIONS IN CLUSTERS , 2005 .

[73]  A. Dekel,et al.  On the origin of the galaxy star‐formation‐rate sequence: evolution and scatter , 2009, 0912.2169.

[74]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[75]  M. Steinmetz,et al.  Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes , 2000, astro-ph/0001003.

[76]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[77]  B. Gibson,et al.  Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum , 2010, 1010.1004.

[78]  C. Lacey,et al.  Numerical overcooling in shocks. , 2011, 1106.0306.

[79]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[80]  L. Hernquist,et al.  QUASI-RESONANT THEORY OF TIDAL INTERACTIONS , 2010, 1009.3927.

[81]  Phillip James Edwin Peebles,et al.  Origin of the Angular Momentum of Galaxies , 1969 .

[82]  F. Governato,et al.  The Formation of a Realistic Disk Galaxy in Λ-dominated Cosmologies , 2004 .

[83]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[84]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[85]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[86]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[87]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[88]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[89]  New Jersey Institute of Technology,et al.  Redistributing hot gas around galaxies: do cool clouds signal a solution to the overcooling problem? , 2008, 0812.2025.

[90]  R. Davé,et al.  Galaxies in a simulated ΛCDM universe – II. Observable properties and constraints on feedback , 2009, 0901.1880.

[91]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[92]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[93]  E. Steinmetz Simulating self-gravitating hydrodynamic flows , 1994, astro-ph/9402070.

[94]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[95]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[96]  Frederic A. Rasio Particle Methods in Astrophysical Fluid Dynamics , 2000 .

[97]  Hydrodynamic Simulations of Galaxy Formation. II. Photoionization and the Formation of Low Mass Galaxies , 1995, astro-ph/9510154.

[98]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[99]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[100]  C. Frenk,et al.  The baryon fraction of Λ CDM haloes , 2007 .

[101]  Nickolay Y. Gnedin,et al.  Computational Eulerian hydrodynamics and Galilean invariance , 2009, 0909.0513.

[102]  U. Berkeley,et al.  Moving mesh cosmology: the hydrodynamics of galaxy formation , 2011, 1109.3468.

[103]  V. Springel,et al.  Moving-mesh cosmology: properties of gas discs , 2011, 1110.5635.

[104]  Volker Springel,et al.  Moving mesh cosmology: numerical techniques and global statistics , 2011, 1109.1281.

[105]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[106]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[107]  R. Cen,et al.  The Lyα Forest from Gravitational Collapse in the Cold Dark Matter + Λ Model , 1995, astro-ph/9511013.

[108]  Andreas Bauer,et al.  Shocking results without shocks: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations , 2011, 1109.4413.

[109]  V. Springel,et al.  Substructures in hydrodynamical cluster simulations , 2008, 0808.3401.

[110]  M. Viel,et al.  Numerical simulations of the Lyman α forest – a comparison of gadget-2 and enzo , 2006, astro-ph/0606638.

[111]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[112]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[113]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[114]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[115]  V. Springel,et al.  X‐ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation , 2004 .