Stieltjes moment properties and continued fractions from combinatorial triangles

Many famous combinatorial numbers can be placed in the following generalized triangular array $[T_{n,k}]_{n,k\ge 0}$ satisfying the recurrence relation: \begin{equation*} T_{n,k}=\lambda(a_0n+a_1k+a_2)T_{n-1,k}+(b_0n+b_1k+b_2)T_{n-1,k-1}+\frac{d(da_1-b_1)}{\lambda}(n-k+1)T_{n-1,k-2} \end{equation*} with $T_{0,0}=1$ and $T_{n,k}=0$ unless $0\le k\le n$. For $n\geq0$, denote by $T_n(q)$ its row-generating functions. In this paper, we consider the $\textbf{x}$-Stieltjes moment property and $3$-$\textbf{x}$-log-convexity of $(T_n(q))_{n\geq0}$ and the linear transformation of $T_{n,k}$ preserving Stieltjes moment properties of sequences. Using total positivity, we develop various criteria for $\textbf{x}$-Stieltjes moment property and $r$-$\textbf{x}$-log-convexity based on a four-term recursive array and Jacobi continued fraction expressions of generating functions. We apply our criteria to the $\textbf{x}$-Stieltjes moment property and $3$-$\textbf{x}$-log-convexity of $T_n(q)$ after we get the Jacobi continued fraction expression of $\sum_{n\geq0}T_n(q)t^n$. With the help of a criterion of Wang and Zhu [Adv. in Appl. Math. (2016)], we show that the corresponding linear transformation of $T_{n,k}$ preserve Stieltjes moment properties of sequences. Finally, we present some related famous examples including factorial numbers, Whitney numbers, Stirling permutations, minimax trees and peak statistics.

[1]  Jean-Christophe Aval,et al.  Tree-like Tableaux , 2013, Electron. J. Comb..

[2]  Xi Chen,et al.  Total positivity of recursive matrices , 2015, 1601.05645.

[3]  J. Remmel,et al.  Stieltjes moment sequences of polynomials , 2017, 1710.05795.

[4]  G. Lusztig Total Positivity in Reductive Groups , 2019 .

[5]  T. K. Petersen Enriched P-partitions and peak algebras , 2005, math/0508041.

[6]  Gi-Sang Cheon,et al.  r-Whitney numbers of Dowling lattices , 2012, Discret. Math..

[7]  Francesco Brenti,et al.  Combinatorics and Total Positivity , 1995, J. Comb. Theory A.

[8]  Jean-Christophe Aval,et al.  The tree structure in staircase tableaux , 2011 .

[9]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[10]  M. Aigner Catalan and other numbers: a recurrent theme , 2001 .

[11]  I. Schoenberg Über variationsvermindernde lineare Transformationen , 1930 .

[12]  Yeong-Nan Yeh,et al.  Stirling Permutations, Cycle Structure of Permutations and Perfect Matchings , 2015, Electron. J. Comb..

[13]  Ira M. Gessel,et al.  Stirling Polynomials , 1978, J. Comb. Theory, Ser. A.

[14]  Y. Kodama,et al.  KP solitons and total positivity for the Grassmannian , 2011, 1106.0023.

[15]  Brigitte Maier,et al.  Totally Positive Matrices , 2016 .

[16]  Bao-Xuan Zhu,et al.  Some positivities in certain triangular arrays , 2014 .

[17]  Sergey Fomin,et al.  Double Bruhat cells and total positivity , 1998, math/9802056.

[18]  Xi Chen,et al.  Total positivity of Riordan arrays , 2015, Eur. J. Comb..

[19]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[20]  A. Sokal,et al.  Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity , 2018, Memoirs of the American Mathematical Society.

[21]  Bao-Xuan Zhu,et al.  Q-log-convexity from Linear Transformations and Polynomials with Only Real Zeros , 2016, Eur. J. Comb..

[22]  Alexander Postnikov,et al.  Total positivity, Grassmannians, and networks , 2006 .

[23]  Stefan Rolewicz,et al.  On a problem of moments , 1968 .

[24]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[25]  Yi Wang,et al.  Log-convex and Stieltjes moment sequences , 2016, Adv. Appl. Math..

[26]  Bao-Xuan Zhu Hankel-total positivity of some sequences , 2019, Proceedings of the American Mathematical Society.

[27]  Bao-Xuan Zhu,et al.  A generalized Eulerian triangle from staircase tableaux and tree-like tableaux , 2020, J. Comb. Theory, Ser. A.

[28]  Arthur L. B. Yang,et al.  Recurrence Relations for Strongly q-Log-Convex Polynomials , 2008, Canadian Mathematical Bulletin.

[29]  Svante Janson,et al.  Generalized Stirling permutations, families of increasing trees and urn models , 2008, J. Comb. Theory, Ser. A.

[30]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[31]  Guo-Niu Han,et al.  Arbres minimax et polynômes d'André , 2001, Adv. Appl. Math..

[32]  Leonhard Euler,et al.  De seriebus divergentibus , 2012, 1202.1506.

[33]  William Y. C. Chen,et al.  The q-log-convexity of the Narayana polynomials of type B , 2010, Adv. Appl. Math..

[34]  Bao-Xuan Zhu A unified approach to combinatorial triangles: a generalized Eulerian polynomial , 2020, 2007.12602.

[35]  David C. Kurtz,et al.  A Note on Concavity Properties of Triangular Arrays of Numbers , 1972, J. Comb. Theory, Ser. A.

[36]  Yeong-Nan Yeh,et al.  Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.

[37]  Yeong-Nan Yeh,et al.  Hankel determinants of linear combinations of consecutive Catalan-like numbers , 2017, Discret. Math..

[38]  Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties , 2001, math/0112024.

[39]  Bao-Xuan Zhu,et al.  Positivity of Iterated Sequences of Polynomials , 2018, SIAM J. Discret. Math..

[40]  J. Stembridge Enriched p-partitions , 1997 .

[41]  Bao-Xuan Zhu Positivity and continued fractions from the binomial transformation , 2019, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[42]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[43]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[44]  S. Fomin,et al.  Parametrizations of Canonical Bases and Totally Positive Matrices , 1996 .

[45]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[46]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..