High accuracy solutions to energy gradient flows from material science models

[1]  Shibin Dai,et al.  Geometric evolution of bilayers under the functionalized Cahn–Hilliard equation , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  K. Promislow,et al.  Critical points of functionalized Lagrangians , 2012 .

[3]  Keith Promislow,et al.  Variational Models of Network Formation and Ion Transport: Applications to Perfluorosulfonate Ionomer Membranes , 2012 .

[4]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[5]  Keith Promislow,et al.  Curvature driven flow of bi-layer interfaces , 2011 .

[6]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[7]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[8]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[9]  Lawrence C. Evans Partial Differential Equations, Second edition , 2010 .

[10]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[11]  Keith Promislow,et al.  PEM Fuel Cells: A Mathematical Overview , 2009, SIAM J. Appl. Math..

[12]  Sebastiano Boscarino,et al.  On an accurate third order implicit-explicit Runge--Kutta method for stiff problems , 2009 .

[13]  Xiangrong Li,et al.  Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.

[14]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[15]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[16]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[17]  Peter K. Jimack,et al.  A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification , 2007, J. Comput. Phys..

[18]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[19]  J. Warren,et al.  Controlling the accuracy of unconditionally stable algorithms in the Cahn-Hilliard equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[21]  A. Rutenberg,et al.  Maximally fast coarsening algorithms. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[23]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[24]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[25]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[26]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[28]  U. Schwarz,et al.  Bicontinuous Surfaces in Self-assembling Amphiphilic Systems , 2003, cond-mat/0301325.

[29]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[30]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[31]  Gustaf Söderlind,et al.  On the construction of error estimators for implicit Runge-Kutta methods , 1997 .

[32]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[33]  G. McFadden,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[34]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[35]  L. Bronsard,et al.  On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation , 1993 .

[36]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[37]  A. Bray Theory of phase-ordering kinetics , 1993, cond-mat/9501089.

[38]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[39]  J. Carr,et al.  Metastable patterns in solutions of ut = ϵ2uxx − f(u) , 1989 .

[40]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[41]  J. Gower Properties of Euclidean and non-Euclidean distance matrices , 1985 .

[42]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[43]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[44]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[45]  K. Promislow,et al.  On the unconditionally gradient stable scheme for the Cahn-Hilliard equation and its implementation with Fourier method , 2013 .

[46]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[47]  Mark Willoughby High-order time-adaptive numerical methods for the Allen-Cahn and Cahn-Hilliard equations , 2011 .

[48]  Xingde Ye,et al.  The Legendre collocation method for the Cahn-Hilliard equation , 2003 .

[49]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[50]  M. Ward,et al.  Metastable internal layer dynamics for the viscous Cahn–Hilliard equation , 1995 .

[51]  E. Hairer,et al.  Solving ordinary differential equations h nonstiff problems , 1993 .

[52]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[53]  L. Sirovich,et al.  Partial Differential Equations , 1941 .