Short non-binary IRA codes on large-girth Hamiltonian graphs

Short non-binary irregular repeat-accumulate (IRA) codes based on well-known Hamiltonian and Hypohamiltonian graphs with large girth are presented. The mapping of the code coordinates on the graph edges is discussed for Hamiltonian graphs, and two encoding methods on Hypohamiltonian graphs are introduced. The performance of the presented codes on order-256 finite fields (F256) is provided for both the additive white Gaussian (AWGN) channel and the binary erasure channel (BEC) under iterative (IT) decoding. For the latter case, the performance under maximum likelihood (ML) decoding is also presented, to illustrate that the proposed codes not only attain performances close to the random coding bound, but also show limited losses when decoded iteratively.

[1]  David Burshtein,et al.  Efficient maximum-likelihood decoding of LDPC codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[2]  H. B. Mann Error-Correcting Codes , 1972 .

[3]  S. Louis Hakimi,et al.  Graph theoretic error-correcting codes , 1968, IEEE Trans. Inf. Theory.

[4]  David Declercq,et al.  Fast decoding algorithm for LDPC over GF(2/sup q/) , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[5]  A. Valembois,et al.  Box and match techniques applied to soft-decision decoding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[6]  Shengli Zhou,et al.  Group-theoretic analysis of cayley-graph-based cycle gf(2p) codes , 2009, IEEE Transactions on Communications.

[7]  David Declercq,et al.  Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images , 2008, IEEE Transactions on Communications.

[8]  Marco Chiani,et al.  Pivoting Algorithms for Maximum Likelihood Decoding of LDPC Codes over Erasure Channels , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[9]  R. Gallager Information Theory and Reliable Communication , 1968 .

[10]  Markus Meringer,et al.  Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.

[11]  Pascal O. Vontobel,et al.  On the construction of turbo code interleavers based on graphs with large girth , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[12]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[13]  S. Louis Hakimi,et al.  Graph theoretic q -ary codes (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[14]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[15]  Geoffrey Exoo A trivalent graph of girth 17 , 2001, Australas. J Comb..

[16]  Ralf Koetter,et al.  Wheel codes: turbo-like codes on graphs of small order , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[17]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[18]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[19]  Dariush Divsalar,et al.  Low-rate LDPC codes with simple protograph structure , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[20]  R. M. Tanner On Quasi-Cyclic Repeat-Accumulate Codes , 2000 .

[21]  Shengli Zhou,et al.  Structure, property, and design of nonbinary regular cycle codes , 2010, IEEE Transactions on Communications.

[22]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[23]  David Declercq,et al.  Design of cages with a randomized progressive edge-growth algorithm , 2008, IEEE Communications Letters.

[24]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[25]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[26]  E.R. Berlekamp,et al.  The technology of error-correcting codes , 1980, Proceedings of the IEEE.

[27]  Arya Mazumdar,et al.  Construction of turbo code interleaves from 3-regular Hamiltonian graphs , 2006, IEEE Commun. Lett..

[28]  Marco Chiani,et al.  Turbo Codes Based on Time-Variant Memory-1 Convolutional Codes over Fq , 2011, 2011 IEEE International Conference on Communications (ICC).

[29]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .