On the application of interval PCA to process monitoring: A robust strategy for sensor FDI with new efficient control statistics
暂无分享,去创建一个
[1] Mohamed Benouaret,et al. Sensor fault detection, isolation and reconstruction using nonlinear principal component analysis , 2007, Int. J. Autom. Comput..
[2] E. Diday,et al. Extension de l'analyse en composantes principales à des données de type intervalle , 1997 .
[3] S. Qin,et al. Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods† , 1999 .
[4] J. E. Jackson,et al. Control Procedures for Residuals Associated With Principal Component Analysis , 1979 .
[5] F. Palumbo,et al. A PCA for interval-valued data based on midpoints and radii , 2003 .
[6] José Ragot,et al. Différentes méthodes de localisation de défauts basées sur les dernières composantes principales , 2002 .
[7] M. Kramer. Nonlinear principal component analysis using autoassociative neural networks , 1991 .
[8] Mohamed-Faouzi Harkat,et al. Fault Detection and Isolation Using Interval Principal Component Analysis Methods , 2015 .
[9] G. Irwin,et al. Process monitoring approach using fast moving window PCA , 2005 .
[10] I. Jolliffe. Principal Component Analysis , 2002 .
[11] P. Bertrand,et al. Descriptive Statistics for Symbolic Data , 2000 .
[12] S. Skogestad. DYNAMICS AND CONTROL OF DISTILLATION COLUMNS A tutorial introduction , 1997 .
[13] Kamel Benothman,et al. Fault detection and isolation with Interval Principal Component Analysis , 2013 .
[14] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[15] Antonio Irpino,et al. Principal Component Analysis of Symbolic Data Described by Intervals , 2008 .
[16] Junjie Wu,et al. CIPCA: Complete-Information-based Principal Component Analysis for interval-valued data , 2012, Neurocomputing.
[17] Chenglin Wen,et al. Analysis of Principal Component Analysis-Based Reconstruction Method for Fault Diagnosis , 2016 .
[18] G. Box. Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification , 1954 .
[19] Weihua Li,et al. Recursive PCA for adaptive process monitoring , 1999 .
[20] Gilles Mourot,et al. An improved PCA scheme for sensor FDI: Application to an air quality monitoring network , 2006 .
[21] Carlos F. Alcala,et al. Reconstruction-based contribution for process monitoring with kernel principal component analysis , 2010, Proceedings of the 2010 American Control Conference.
[22] Edwin Diday,et al. Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .
[23] P. Giordani,et al. A least squares approach to principal component analysis for interval valued data , 2004 .
[24] Carlo Lauro,et al. Principal component analysis on interval data , 2006, Comput. Stat..
[25] S. Qin,et al. Determining the number of principal components for best reconstruction , 2000 .
[26] L. Billard,et al. Symbolic Covariance Principal Component Analysis and Visualization for Interval-Valued Data , 2012 .
[27] S. Joe Qin,et al. Statistical process monitoring: basics and beyond , 2003 .
[28] John F. MacGregor,et al. Multivariate SPC charts for monitoring batch processes , 1995 .
[29] S. Joe Qin,et al. Subspace approach to multidimensional fault identification and reconstruction , 1998 .
[30] Huiwen Wang,et al. Principal component analysis for probabilistic symbolic data: a more generic and accurate algorithm , 2015, Adv. Data Anal. Classif..