Evolution of in Situ Refractories in the 20th Century

A common theme over the past 100 years in refractories science and technology has been to generate a protective refractories layer in a high-temperature container, often by reaction of the refractory materials with the contents (glass, slag, or atmosphere). The history of refractories during the 20th century is used in this review to illustrate how techniques-such as slag splashing, in situ spinel generation in castables, magnesia dense layer formation in magnesia-carbon brick in steelmaking, clinker adhesion in cement kilns, and viscous boundary layer generation in glass tanks-have evolved to their present status.

[1]  William E Lee,et al.  The “Direct Bond” in Magnesia Chromite and Magnesia Spinel Refractories , 1995 .

[2]  J. Drennan,et al.  Structural characterization of the thermal transformation of halloysite by solid state NMR , 1993 .

[3]  E. Litovsky,et al.  Gas Pressure and Temperature Dependences of Thermal Conductivity of Porous Ceramic Materials: Part 2, Refractories and Ceramics with Porosity Exceeding 30% , 1992 .

[4]  T. Log Transient Hot-Strip Method for Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Refractory Materials , 1991 .

[5]  M. Akinc,et al.  Role of Ceria in Enhancing the Resistance of Aluminosilicate Refractories to Attack by Molten Aluminum Alloy , 1989 .

[6]  R. Bradt,et al.  Linear Thermal Expansion Coefficients of Mullite‐Matrix Aluminosilicate Refractory Bodies , 1983 .

[7]  H. Abe,et al.  Crack Stability in the Work‐of‐Fracture Test: Refractory Applications , 1981 .

[8]  V. G. Sivash,et al.  Glaze for carbon-containing refractories , 1980 .

[9]  B. Brezny Equilibrium Partial Pressure of Mg, SiO, Ca, and CO in Carbon‐Containing Doloma Refractories , 1976 .

[10]  J. Simonato,et al.  Arc‐Imaging Technique for Measuring High‐Temperature Thermal Conductivity and Diffusivity of Refractory Oxides , 1975 .

[11]  D. Hasselman,et al.  Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics , 1969 .

[12]  Junn Nakayama A Bending Method for Direct Measurement of Fracture Energy of Brittle Material , 1964 .

[13]  D. Hasselman,et al.  Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock , 1963 .

[14]  A. Muan Reactions Between Iron Oxides and Alumina‐Silica Refractories , 1958 .

[15]  M. S. Crowley,et al.  Effects of High-Conductivity Gases on the Thermal Conductivity of Insulating Refractory Concrete , 1958 .

[16]  R. Snow,et al.  Reaction Between K2O and Al2O3-SiO2 Refractories as Related to Blast-Furnace Linings , 1957 .

[17]  W. H. Gitzen,et al.  Properties of Some Calcium Aluminate Cement Compositions , 1957 .

[18]  L. E. Mong,et al.  Dynamic and Static Tests for Mechanical Properties of Fired Plastic Refractories and Other More Resilient Materials , 1956 .

[19]  A. W. Allen,et al.  Application of Sonic Moduli of Elasticity and Rigidity to Testing of Heavy Refractories , 1954 .

[20]  R. A. Heindl,et al.  Permeability and Some Other Properties of a Variety of Refractory Materials: I , 1953 .

[21]  N. N. Ault,et al.  Sonic Analysis for Solid Bodies , 1953 .

[22]  J. B. Austin Thermal Expansion of Nonmetallic Crystals , 1952 .

[23]  J. E. Comeforo,et al.  Wetting of Al2O3-SiO2 Refractories by Molten Glass: I, Measurement of Wetting , 1952 .

[24]  J. F. Wygant Elastic and Flow Properties of Dense, Pure Oxide Refractories , 1951 .

[25]  E. S. Fitzsimmons Thermal Diffusivity of Refractory Oxides , 1950 .

[26]  W. Kingery Fundamental Study of Phosphate Bonding in Refractories: I, Literature Review , 1950 .

[27]  K. A. Baab,et al.  SONIC METHOD FOR DETERMINING YOUNG'S MODULUS OF ELASTICITY , 1948 .

[28]  L. E. Mong ELASTIC BEHAVIOR AND CREEP OF REFRACTORY BRICK UNDER TENSILE AND COMPRESSIVE LOADS , 1947 .

[29]  J. Winckler SPHERICAL FURNACE CALORIMETER FOR DIRECT MEASUREMENT OF SPECIFIC HEAT AND THERMAL CONDUCTIVITY , 1943 .

[30]  H. G. Schurecht REACTIONS OF SLAG WITH REFRACTORIES: I, SURFACE REACTIONS* , 1939 .

[31]  R. Fehling,et al.  INFLUENCE OF FLUIDITY, HYDRODYNAMIC CHARACTERISTICS, AND SOLVENT ACTION OF SLAG ON THE DESTRUCTION OF REFRACTORIES AT HIGH TEMPERATURE* , 1939 .

[32]  F. Norton A CRITICAL EXAMINATION OF THE LOAD TEST FOR REFRACTORIES , 1939 .

[33]  J. B. Austin LINEAR THERMAL EXPANSION OF “BETA-ALUMINA”* , 1938 .

[34]  R. A. Heindl,et al.  Deformation and Young's modulus of fire-clay brick in flexure at 1,220 degrees C , 1937 .

[35]  R. A. Heindl,et al.  Young's modulus of elasticity, strength, and extensibility of refractories in tension , 1936 .

[36]  N. W. Taylor,et al.  KINETICS OF SOLID‐PHASE REACTIONS OF CERTAIN CARBONATES WITH MULLITE, SILICA, AND ALUMINA* , 1935 .

[37]  J. B. Austin,et al.  CONSTITUTION AND THERMAL EXPANSION OF SILICA COKEOVEN BRICK AFTER SERVICE , 1933 .

[38]  J. B. Austin THE THERMAL EXPANSION OF SOME REFRACTORY OXIDES1 , 1931 .

[39]  R. F. Ferguson,et al.  A REVIEW OF THE LITERATURE ON LABORATORY SLAG TESTS FOR REFRACTORIES1 , 1928 .

[40]  H. R. Goodrich SPALLING AND LOSS IN COMPRESSIVE STRENGTH OF FIRE BRICK1 , 1927 .

[41]  W. Turner THE ATTACK OF ARSENIC COMPOUNDS ON FIRECLAY REFRACTORY MATERIAL1 , 1926 .

[42]  F. Norton THE THERMAL EXPANSION OF REFRACTORIES1 , 1925 .

[43]  R. B. Sosman SOME FUNDAMENTAL PRINCIPLES GOVERNING THE CORROSION OF A FIRE CLAY REFRACTORY BY A GLASS1 , 1925 .

[44]  H. Insley NOTES ON THE BEHAVIOR OF REFRACTORIES IN GLASS MELTING FURNACES1 , 1924 .

[45]  J. W. Greig,et al.  THE SYSTEM: Al2O3.SiO2 , 1924 .

[46]  Charles I. Rose A PROPOSED METHOD FOR STUDYING THE ATTACK OF MOLTEN SLAGS AND GLASSES UPON REFRACTORY MATERIALS1 , 1923 .

[47]  W. Darby,et al.  THE DISINTEGRATION OF REFRACTORY BRICK BY CARBON MONOXIDE1 , 1923 .

[48]  J. W. Cobb,et al.  THE REVERSIBLE THERMAL EXPANSION OF REFRACTORY MATERIALS , 1923 .

[49]  R. Pike NEED FOR MORE REFRACTORY HEAT INSULATORS Proposed Conductometers for Measuring Thermal Conductivity1 , 1922 .

[50]  W. E. Lee,et al.  Microstructural evolution in self-forming spinel/calcium aluminate-bonded castable refractories , 1998 .

[51]  J. Sharp,et al.  Microstructural evolution in fired kaolinite , 1998 .

[52]  Udayan Senapati,et al.  Porcelain—Raw Materials, Processing, Phase Evolution, and Mechanical Behavior , 1998 .

[53]  R. Bradt,et al.  Stengths of fused and tabular alumina refractory grains , 1988 .

[54]  R. Moore,et al.  Refractory of the past for the future: mullite and its use as a bonding phase , 1988 .

[55]  R. Bradt Fracture measurements of refractories: past, present, and future , 1988 .

[56]  T. Darroudi,et al.  Effects of temperature and stressing rate on fracture strength of a series of high AL2O3 refractories , 1987 .

[57]  D. Hasselman,et al.  Comparison of Data for Thermal Diffusivity Obtained by Laser‐Flash Method Using Thermocouple and Photodetector , 1985 .

[58]  C. Cooper,et al.  The role of graphite in the thermal shock resistance of refractories , 1985 .

[59]  J. Halloran,et al.  Fracture of phosphate-bonded high-alumina refractories , 1983 .

[60]  J. Halloran,et al.  STRENGTH AND MICROSTRUCTURE OF PHOSPHATE-BONDED ALUMINA REFRACTORIES. , 1981 .

[61]  T. Robson Refractory Concretes: Past, Present, and Future , 1978 .

[62]  R. J. Leonard,et al.  Significance of Oxidation‐Reduction Reactions Within BOF Refractories , 1972 .

[63]  R. Davidge,et al.  THERMAL SHOCK AND FRACTURE IN CERAMICS. , 1967 .

[64]  L. E. Mong,et al.  Elasticity, Strength, and Other Related Properties of Some Refractory Castables , 1958 .

[65]  G. D. Elliot,et al.  Ironmaking at the appleby-frodingham works of the United Steel Companies, Limited , 1944 .

[66]  C. C. Furnas KINETICS OF SOME REACTIONS OF INTEREST TO CERAMISTS The Disintegration of Blast‐Furnace Linings Due to Carbon Deposition , 1936 .

[67]  F. Norton THE THERMAL CONDUCTIVITY OF SOME REFRACTORIES1 , 1927 .

[68]  M. Beecher DEVELOPMENTS IN THE MANUFACTURE OF REFRACTORIES OF FUSED ALUMINA , 1923 .

[69]  E. Griffiths The thermal conductivity of materials employed in furnace construction , 1917 .