Methane Hydrate, A Special Clathrate: Its Attributes and Potential.

Abstract : Gas hydrates are pressure-stabilized, ice-like compounds found in the cold deep-ocean environment, especially Polar oceans. Natural gas, primarily methane, is held within a water-molecule crystal lattice and thermodynamically stabilizes the structure via hydrogen bonding. Hydrate readily forms in the Hydrate Stability Zone in which hydrate is thermodynamically stable. This region extends downward from the sediment surface at the sea bottom to a depth determined by the local heat flow and water depth, e.g. pressure. Although many publications have recorded the presence of gas hydrate, which commonly stores 160 - 180 volumes of gas (methane, STP) per volume of hydrate, in virtually all of the world's oceans, widespread perception of their extent is unclear because hydrates have been mainly treated as a scientific curiosity or engineering hazard. It is increasingly clear that the unique chemistry of hydrates may allow for new fuel storage and transport applications. This report is intended as a general reference text for non-gas hydrate specialist scientists and for non-scientists with a technical background. p2

[1]  K. Goodman,et al.  Deep bacterial biosphere in Pacific Ocean sediments , 1994, Nature.

[2]  E. A. Romankevich Geochemistry of organic matter in the ocean , 1984 .

[3]  G. Shaffer A Model of Biogeochemical Cycling of Phosphorus, Nitrogen, Oxygen, and Sulphur in the Ocean' One Step Toward a Global Climate Model , 1989 .

[4]  M. Faraday,et al.  On Fluid Chlorine , 1823 .

[5]  G. Bryan,et al.  MICROTOPOGRAPHY OF THE BLAKE-BAHAMA REGION , 1966 .

[6]  Henning Rodhe,et al.  A Comparison of the Contribution of Various Gases to the Greenhouse Effect , 1990, Science.

[7]  R. Schlitzer Modeling the nutrient and carbon cycles of the North Atlantic: 1. Circulation, mixing coefficients, and heat fluxes , 1988 .

[8]  K. Andreassen,et al.  Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly , 1990 .

[9]  H. Sejrup,et al.  A giant three-stage submarine slide off Norway , 1987 .

[10]  Y. Kharaka Petroleum formation and occurrence. A new approach to oil and gas exploration , 1980 .

[11]  Robert D. Stoll,et al.  Physical properties of sediments containing gas hydrates , 1979 .

[12]  S. Wofsy,et al.  Tropospheric chemistry: A global perspective , 1981 .

[13]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[14]  Warren T. Wood,et al.  Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling , 1996, Science.

[15]  W. Dillon,et al.  The Blake Plateau Basin and Carolina Trough , 1988 .

[16]  D. Reed,et al.  Relations between mud volcanoes; thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama , 1990 .

[17]  R. Flood,et al.  Cyclic Sediment Deposition Within Amazon Deep-Sea Fan , 1988 .

[18]  J. Kiehl Clouds and climate change , 1991 .

[19]  R. Sassen,et al.  Origin of Crude Oil in the Wilcox Trend of Louisiana and Mississippi: Evidence of Long-Range Migration , 1988 .

[20]  Veerabhadran Ramanathan,et al.  Trace gas trends and their potential role in climate change , 1985 .

[21]  M. Field,et al.  Gas hydrates on the northern California continental margin , 1985 .

[22]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[23]  R. White Gas hydrate layers trapping free gas in the Gulf of Oman , 1979 .

[24]  A. Judge Natural gas hydrates in Canada , 1982 .

[25]  M. Rowe,et al.  Results of a deep‐tow multichannel survey on the Bermuda Rise , 1988 .

[26]  M. Hobart,et al.  Thermal evolution of the western Svalbard margin , 1985 .

[27]  A. Slingo,et al.  Sensitivity of the Earth's radiation budget to changes in low clouds , 1990, Nature.

[28]  A. Elverhøi,et al.  Submarine permafrost and gas hydrates in the northern Barents Sea , 1990 .

[29]  A. Lowrie,et al.  Natural gas hydrates: Arctic and Nordic Sea potential , 1993 .

[30]  M. Lee,et al.  Seismic character of gas hydrates on the Southeastern U.S. continental margin , 1994 .

[31]  A. Kehew,et al.  Origin and large-scale erosional features of glacial-lake spillways in the northern Great Plains. , 1986 .

[32]  E. Hamilton Geoacoustic modeling of the sea floor , 1980 .

[33]  D. B. Prior,et al.  Evidence for Sediment Eruption on Deep Sea Floor, Gulf of Mexico , 1989, Science.

[34]  T. Minshull,et al.  Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion , 1996 .

[35]  M. Khalil,et al.  Sources, sinks, and seasonal cycles of atmospheric methane , 1983 .

[36]  Isaac R. Kaplan,et al.  Natural Gases in Marine Sediments , 1974, Marine Science.

[37]  Robert J. Urick,et al.  Principles of underwater sound , 1975 .

[38]  R. Fairbridge,et al.  The encyclopedia of oceanography , 1966 .

[39]  G. A. Jeffrey,et al.  Neutron diffraction study of the crystal structure of ethylene oxide deuterohydrate at 80°K , 1977 .

[40]  E. Faber,et al.  16. MOLECULAR AND STABLE ISOTOPE COMPOSITION OF HEADSPACE AND TOTAL HYDROCARBON GASES AT ODP LEG 104, SITES 642, 643, AND 644, VORING PLATEAU, NORWEGIAN SEA 1 , 1989 .

[41]  Kevin M. Brown,et al.  The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems , 1990 .

[42]  W. Dillon,et al.  Growth Faulting and Salt Diapirism: Their Relationship and Control in the Carolina Trough, Eastern North America: Rifted Margins: Field Investigations of Margin Structure and Stratigraphy , 1982 .

[43]  D. Ehhalt,et al.  Sources and sinks of atmospheric methane , 1978 .

[44]  M. Ewing,et al.  Seismic-Profiler Survey of Blake Plateau , 1966 .

[45]  W. Dean,et al.  Origin and geochemistry of Cretaceous deep-sea black shales and multi-colored claystones, with emphasis on Deep Sea Drilling Project site 530, Southern Angola Basin. , 1984 .

[46]  Stephen H. Kirby,et al.  Peculiarities of Methane Clathrate Hydrate Formation and Solid-State Deformation, Including Possible Superheating of Water Ice , 1996, Science.

[47]  P. Vogt,et al.  Heat flow highs on the Norwegian‐Barents‐Svalbard continental slope: Deep crustal fractures, dewatering, or “memory in the mud”? , 1996 .

[48]  A. Elverhøi,et al.  A pockmark field in the Central Barents Sea; gas from a petrogenic source? , 1985 .

[49]  E. Carmack,et al.  Thermohaline circulation in the Arctic Mediterranean Seas , 1985 .

[50]  M. Yamano,et al.  44. HEAT-FLOW STUDIES IN THE PERU TRENCH SUBDUCTION ZONE 1 , 1990 .

[51]  G. Bryan,et al.  Stratigraphic Evolution of Blake Outer Ridge , 1983 .

[52]  G. Bryan,et al.  Gas-Hydrate Horizons Detected in Seismic-Profiler Data from the Western North Atlantic , 1977 .

[53]  K. Emery,et al.  The Geology of the Atlantic Ocean , 1967 .

[54]  M. Hovland,et al.  The impact of fluid and gas venting on bacterial populations and processes in sediments from the Cascadia Margin accretionary system (sites 888-892) , 1995 .

[55]  S. Smithson,et al.  Seismic reflectivity of mylonite zones in the crust , 1984 .

[56]  R. Dickinson,et al.  A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early Earth surface temperatures , 1987 .

[57]  D. Cram Molecular container compounds , 1992, Nature.

[58]  R. Flood,et al.  Anomalous sound velocities in near-surface, organic-rich, gassy sediments in the central Argentine Basin , 1989 .

[59]  Alan Judd,et al.  Seabed pockmarks and seepages : impact on geology, biology and the marine environment , 1988 .

[60]  L. Thorleifson,et al.  The Lake Agassiz-Lake Superior connection. , 1983 .

[61]  C. Summerhayes Organic Facies of Middle Cretaceous Black Shales in Deep North Atlantic , 1981 .

[62]  J. S. Creager,et al.  Geologic Synthesis of Leg 19 (DSDP) Results: Far North Pacific, and Aleutian Ridge, and Bering Sea , 1973 .

[63]  G. Demaison Anoxia vs. Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks?: Discussion , 1991 .

[64]  J. Hansen,et al.  The ice-core record: climate sensitivity and future greenhouse warming , 1990, Nature.

[65]  J. Krason,et al.  Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 9, Formation and stability of gas hydrates of the Middle America Trench , 1986 .

[66]  B. Hitchon Occurrence of Natural Gas Hydrates in Sedimentary Basins , 1974 .

[67]  J. W. Dick,et al.  Naturally Occurring Gas Hydrates in the Mackenzie Delta, N.W.T. , 1974 .

[68]  R. White,et al.  Sediment dewatering in the Makran accretionary prism , 1985 .

[69]  M. Field,et al.  Thermogenic hydrocarbons in unconsolidated sediment of Eel river basin, offshore northern California , 1981 .

[70]  Keith A. Kvenvolden,et al.  Hydrates of natural gas; a review of their geologic occurrence , 1980 .

[71]  P. Vogt,et al.  Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait , 1994 .

[72]  M. Macleod Gas hydrates in ocean bottom sediments , 1982 .

[73]  M. Rowe,et al.  Fine structure of methane hydrate-bearing sediments on the Blake Outer ridge as determined from deep-tow multichannel seismic data. (Reannouncement with new availability information). Final report , 1993 .

[74]  B. Kennett,et al.  Seismic Wave Propagation in Stratified Media , 1983 .

[75]  J. Mutter Cenozoic and late Mesozoic stratigraphy and subsidence history of the Norwegian margin , 1984 .

[76]  K. Kvenvolden Methane hydrates and global climate , 1988 .

[77]  M. Arthur North Atlantic Cretaceous Black Shales: The Record at Site 398 and a Brief Comparison with Other Occurrences , 1979 .

[78]  J. Stewart,et al.  In situ hydrates under the Beaufort Sea shelf , 1982 .

[79]  W. Dow Petroleum Source Beds on Continental Slopes and Rises , 1978 .

[80]  J. Curiale,et al.  Leg 67: The Deep Sea Drilling Project Mid-America Trench transect off Guatemala , 1980 .

[81]  J. Leggett,et al.  Transition from frontal accretion to underplating in a part of the Nankai Trough Accretionary Complex off Shikoku (SW Japan) and extensional features on the lower trench slope , 1985 .

[82]  E. Hammerschmidt Formation of Gas Hydrates in Natural Gas Transmission Lines , 1934 .

[83]  K. Brown,et al.  The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region , 1996 .

[84]  C. Paull,et al.  Combined vertical-incidence and wide-angle seismic study of a gas hydrate zone , 1994 .

[85]  P. Vogt Seafloor Topography, Sediments, and Paleoenvironments , 1986 .

[86]  P. Stoffa,et al.  Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin by “subaerial sea-floor spreading” , 1982 .

[87]  P. Englezos,et al.  Prediction of gas hydrate formation conditions in aqueous electrolyte solutions , 1988 .

[88]  Alan Powell,et al.  TO FOSTER INNOVATION IN NAVAL SHIPS , 1982 .

[89]  H. M. Hubbard THE REAL COST OF ENERGY , 1991 .

[90]  M. Lee,et al.  Identification of Marine Hydrates In Situ and Their Distribution off the Atlantic Coast of the United States a , 1994 .

[91]  John F. B. Mitchell,et al.  THE "GREENHOUSE" EFFECT AND CLIMATE CHANGE , 1989 .

[92]  K. Mopper,et al.  Chapter 31 – Factors Controlling the Distribution and Early Diagenesis of Organic Material in Marine Sediments* , 1976 .

[93]  D. Katz Handbook of Natural Gas Engineering , 1959 .

[94]  H. Villinger,et al.  Rates of fluid expulsion across the Northern Cascadia Accretionary Prism: Constraints from new heat row and multichannel seismic reflection data , 1990 .

[95]  B. Barkstrom,et al.  Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment , 1989, Science.

[96]  J. Moore,et al.  VARIATIONS IN TEMPERATURE GRADIENTS IDENTIFY ACTIVE FAULTS IN THE OREGON ACCRETIONARY PRISM , 1996 .

[97]  J. Kasting,et al.  A hybrid model of the CO2 geochemical cycle and its application to large impact events. , 1986, American journal of science.