Steiner Quadruple Systems With Point-Regular Abelian Automorphism Groups

In this article we present a graph theoretic construction of Steiner quadruple systems (SQS) admitting Abelian groups as point-regular automorphism groups. The resulting SQS has an extra property that we call A-reversibility, where A is the underlying Abelian group. In particular, when A is a 2-group of exponent at most 4, it is shown that an A-reversible SQS always exists. When the Sylow 2-subgroup of A is cyclic, we give a necessary and sufficient condition for the existence of an A-reversible SQS, which is a generalization of a necessary and sufficient condition for the existence of a dihedral SQS by Piotrowski (1985). This enables one to construct A-reversible SQS for any Abelian group A of order v such that for every prime divisor p of v there exists a dihedral SQS(2p).

[1]  Michael Huber Almost simple groups with socle Ln(q) acting on Steiner quadruple systems , 2010, J. Comb. Theory, Ser. A.

[2]  Akihiro Munemasa,et al.  Simple abelian quadruple systems , 2007, J. Comb. Theory, Ser. A.

[3]  Helmut Siemon,et al.  Some remarks on the construction of cyclic Steiner Quadruple Systems , 1987 .

[4]  Hanfried Lenz,et al.  Design theory , 1985 .

[5]  Helmut Siemon,et al.  A Number Theoretic Conjecture and the Existence of S–Cyclic Steiner Quadruple Systems , 1998, Des. Codes Cryptogr..

[6]  Tuvi Etzion,et al.  The last packing number of quadruples, and cyclic SQS , 1993, Des. Codes Cryptogr..

[7]  J. Petersen Die Theorie der regulären graphs , 1891 .

[8]  Egmont Köhler Zyklische Quadrupelsysteme , 1979 .

[9]  Helmut Siemon On the existence of cyclic Steiner Quadruple systems SQS (2p) , 1991, Discret. Math..

[10]  Haim Hanani,et al.  On Some Tactical Configurations , 1963, Canadian Journal of Mathematics.

[11]  L. Lovász Combinatorial problems and exercises , 1979 .

[12]  Erwin Schrödinger International,et al.  Supported by the Austrian Federal Ministry of Education, Science and Culture , 1689 .

[13]  Tao Feng,et al.  Constructions for strictly cyclic 3-designs and applications to optimal OOCs with lambda=2 , 2008, J. Comb. Theory, Ser. A.

[14]  Patric R. J. Östergård,et al.  The Steiner quadruple systems of order 16 , 2006, J. Comb. Theory, Ser. A.

[15]  P. Dembowski Finite geometries , 1997 .

[16]  Masanori Sawa,et al.  Optical Orthogonal Signature Pattern Codes With Maximum Collision Parameter $2$ and Weight $4$ , 2010, IEEE Transactions on Information Theory.