Steiner Quadruple Systems With Point-Regular Abelian Automorphism Groups
暂无分享,去创建一个
[1] Michael Huber. Almost simple groups with socle Ln(q) acting on Steiner quadruple systems , 2010, J. Comb. Theory, Ser. A.
[2] Akihiro Munemasa,et al. Simple abelian quadruple systems , 2007, J. Comb. Theory, Ser. A.
[3] Helmut Siemon,et al. Some remarks on the construction of cyclic Steiner Quadruple Systems , 1987 .
[4] Hanfried Lenz,et al. Design theory , 1985 .
[5] Helmut Siemon,et al. A Number Theoretic Conjecture and the Existence of S–Cyclic Steiner Quadruple Systems , 1998, Des. Codes Cryptogr..
[6] Tuvi Etzion,et al. The last packing number of quadruples, and cyclic SQS , 1993, Des. Codes Cryptogr..
[7] J. Petersen. Die Theorie der regulären graphs , 1891 .
[8] Egmont Köhler. Zyklische Quadrupelsysteme , 1979 .
[9] Helmut Siemon. On the existence of cyclic Steiner Quadruple systems SQS (2p) , 1991, Discret. Math..
[10] Haim Hanani,et al. On Some Tactical Configurations , 1963, Canadian Journal of Mathematics.
[11] L. Lovász. Combinatorial problems and exercises , 1979 .
[12] Erwin Schrödinger International,et al. Supported by the Austrian Federal Ministry of Education, Science and Culture , 1689 .
[13] Tao Feng,et al. Constructions for strictly cyclic 3-designs and applications to optimal OOCs with lambda=2 , 2008, J. Comb. Theory, Ser. A.
[14] Patric R. J. Östergård,et al. The Steiner quadruple systems of order 16 , 2006, J. Comb. Theory, Ser. A.
[15] P. Dembowski. Finite geometries , 1997 .
[16] Masanori Sawa,et al. Optical Orthogonal Signature Pattern Codes With Maximum Collision Parameter $2$ and Weight $4$ , 2010, IEEE Transactions on Information Theory.