Feature preserving Delaunay mesh generation from 3D multi‐material images

Generating realistic geometric models from 3D segmented images is an important task in many biomedical applications. Segmented 3D images impose particular challenges for meshing algorithms because they contain multi‐material junctions forming features such as surface patches, edges and corners. The resulting meshes should preserve these features to ensure the visual quality and the mechanical soundness of the models. We present a feature preserving Delaunay refinement algorithm which can be used to generate high‐quality tetrahedral meshes from segmented images. The idea is to explicitly sample corners and edges from the input image and to constrain the Delaunay refinement algorithm to preserve these features in addition to the surface patches. Our experimental results on segmented medical images have shown that, within a few seconds, the algorithm outputs a tetrahedral mesh in which each material is represented as a consistent submesh without gaps and overlaps. The optimization property of the Delaunay triangulation makes these meshes suitable for the purpose of realistic visualization or finite element simulations.

[1]  J. Marescaux,et al.  ÉVALUATION CHIRURGICALE ET RÉVOLUTION NUMÉRIQUE: LE MODÈLE DE L'IRCAD (Institut de Recherche contre les Cancers de l'Appareil Digestif) , 2010 .

[2]  Pierre Alliez,et al.  Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation , 2009, ACM Trans. Graph..

[3]  Ross T. Whitaker,et al.  Particle-based Sampling and Meshing of Surfaces in Multimaterial Volumes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[5]  Laurent Rineau,et al.  High-Quality Consistent Meshing of Multi-label Datasets , 2007, IPMI.

[6]  Hervé Delingette,et al.  Dynamic Model of Communicating Hydrocephalus for Surgery Simulation , 2007, IEEE Transactions on Biomedical Engineering.

[7]  Tamal K. Dey,et al.  Delaunay Refinement for Piecewise Smooth Complexes , 2007, SODA '07.

[8]  Laurent Rineau,et al.  Meshing 3D Domains Bounded by Piecewise Smooth Surfaces* , 2007, IMR.

[9]  Thomas J. R. Hughes,et al.  Automatic 3D Mesh Generation for a Domain with Multiple Materials , 2007, IMR.

[10]  Joshua A. Levine,et al.  A Practical Delaunay Meshing Algorithm for aLarge Class of Domains* , 2007, IMR.

[11]  Leif Kobbelt,et al.  Extracting Consistent and Manifold Interfaces from Multi-valued Volume Data Sets , 2006, Bildverarbeitung für die Medizin.

[12]  Steve Oudot,et al.  Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones , 2006 .

[13]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[14]  Hans Hagen,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Non-manifold Mesh Extraction from Time-varying Segmented Volumes Used for Modeling a Human Heart , 2022 .

[15]  M. Yvinec,et al.  Meshing Volumes Bounded by Smooth Surfaces , 2005, IMR.

[16]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[17]  Alexander Bornik,et al.  Constructing Smooth Non-Manifold Meshes of Multi-Labeled Volumetric Datasets , 2005, WSCG.

[18]  Gregory M. Nielson,et al.  Dual marching cubes , 2004, IEEE Visualization 2004.

[19]  Ziji Wu,et al.  Multiple material marching cubes algorithm , 2003 .

[20]  Jonathan Richard Shewchuk,et al.  Mesh generation for domains with small angles , 2000, SCG '00.

[21]  Yves Bertrand,et al.  Topological 3D-manifolds: a statistical study of the cells , 2000, Theor. Comput. Sci..

[22]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[23]  Sarah Gibson Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data , 1998 .

[24]  Frithjof Kruggel,et al.  A fast algorithm for generating large tetrahedral 3D finite element meshes from magnetic resonance tomograms , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[25]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[26]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[27]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[28]  Sarah F. Frisken Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data , 1998, MICCAI.

[29]  Longin Jan Latecki 3D Well-Composed Pictures , 1997, CVGIP Graph. Model. Image Process..

[30]  H. Hege,et al.  A Generalized Marching Cubes Algorithm Based On Non-Binary Classifications , 1997 .

[31]  R. Franke,et al.  Computing the separating surface for segmented data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[32]  Herbert Edelsbrunner,et al.  Triangulating topological spaces , 1994, SCG '94.