Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties.

Energy storage technologies are critical in addressing the global challenge of clean sustainable energy. Major advances in rechargeable batteries for portable electronics, electric vehicles and large-scale grid storage will depend on the discovery and exploitation of new high performance materials, which requires a greater fundamental understanding of their properties on the atomic and nanoscopic scales. This review describes some of the exciting progress being made in this area through use of computer simulation techniques, focusing primarily on positive electrode (cathode) materials for lithium-ion batteries, but also including a timely overview of the growing area of new cathode materials for sodium-ion batteries. In general, two main types of technique have been employed, namely electronic structure methods based on density functional theory, and atomistic potentials-based methods. A major theme of much computational work has been the significant synergy with experimental studies. The scope of contemporary work is highlighted by studies of a broad range of topical materials encompassing layered, spinel and polyanionic framework compounds such as LiCoO2, LiMn2O4 and LiFePO4 respectively. Fundamental features important to cathode performance are examined, including voltage trends, ion diffusion paths and dimensionalities, intrinsic defect chemistry, and surface properties of nanostructures.

[1]  A. Kuwabara,et al.  Antiphase inversion domains in lithium cobaltite thin films deposited on single-crystal sapphire substrates , 2013 .

[2]  Ji‐Guang Zhang,et al.  Oxygen Vacancies and Ordering of d‐levels Control Voltage Suppression in Oxide Cathodes: the Case of Spinel LiNi0.5Mn1.5O4‐δ , 2013 .

[3]  John P. Perdew,et al.  Climbing the ladder of density functional approximations , 2013 .

[4]  K. Fujimura,et al.  Accelerated Materials Design of Lithium Superionic Conductors Based on First‐Principles Calculations and Machine Learning Algorithms , 2013 .

[5]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[6]  L. Nazar,et al.  Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 , 2013 .

[7]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[8]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[9]  M. Islam,et al.  Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation , 2013 .

[10]  Ashok K. Vijh,et al.  Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends , 2013, Journal of Power Sources.

[11]  M. E. Arroyo-de Dompablo,et al.  Recent advances in first principles computational research of cathode materials for lithium-ion batteries. , 2013, Accounts of chemical research.

[12]  Ramazan Kahraman,et al.  Na2FeP2O7 as a Promising Iron‐Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study , 2013 .

[13]  C. Fisher,et al.  Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4 , 2013 .

[14]  Kristin A. Persson,et al.  Surface structure and equilibrium particle shape of the LiMn2O4 spinel from first-principles calculations , 2013 .

[15]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[16]  Jun Liu,et al.  Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid , 2013 .

[17]  C. Day,et al.  A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure , 2013 .

[18]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[19]  S. C. Parker,et al.  Nanostructuring of β-MnO2: The Important Role of Surface to Bulk Ion Migration , 2013 .

[20]  J. Choi,et al.  Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. , 2013, Journal of the American Chemical Society.

[21]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[22]  Piercarlo Mustarelli,et al.  Theoretical investigation of Li2MnSiO4 as a cathode material for Li-ion batteries: a DFT study , 2013 .

[23]  A. Kuwabara,et al.  First‐Principles Calculations of Lithium‐Ion Migration at a Coherent Grain Boundary in a Cathode Material, LiCoO2 , 2013, Advanced materials.

[24]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[25]  Shin-ichi Nishimura,et al.  High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. , 2012, Angewandte Chemie.

[26]  Anti Liivat Structural changes on cycling Li2FeSiO4 polymorphs from DFT calculations , 2012 .

[27]  P. Mustarelli,et al.  Lithium diffusion in Li1−xFePO4: the effect of cationic disorder , 2012 .

[28]  G. Liang,et al.  Atomistic modeling of site exchange defects in lithium iron phosphate and iron phosphate , 2012 .

[29]  A. Manthiram,et al.  Calculations of Oxygen Stability in Lithium-Rich Layered Cathodes , 2012 .

[30]  J. Fergus Ion transport in sodium ion conducting solid electrolytes , 2012 .

[31]  J. Tarascon,et al.  Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries , 2012 .

[32]  M. Nakayama,et al.  First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. , 2012, Physical chemistry chemical physics : PCCP.

[33]  M. Wagemaker,et al.  Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. , 2012, ACS nano.

[34]  K. Kang,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[35]  S. Park,et al.  Structure, Defect Chemistry, and Lithium Transport Pathway of Lithium Transition Metal Pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): Atomistic Simulation Study , 2012 .

[36]  T. Ohno,et al.  Formation of Perpendicular Graphene Nanosheets on LiFePO4: A First-Principles Characterization , 2012 .

[37]  A. Dillon,et al.  A Novel Codoping Approach for Enhancing the Performance of LiFePO4 Cathodes , 2012 .

[38]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[39]  P. Madden,et al.  Lithium intercalation into TiO2(B): A comparison of LDA, GGA, and GGA+U density functional calculations , 2012 .

[40]  C. Grey,et al.  Structural modulation in the high capacity battery cathode material LiFeBO3. , 2012, Journal of the American Chemical Society.

[41]  Ming Xu,et al.  One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor , 2012 .

[42]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[43]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[44]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[45]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[46]  Yongseon Kim,et al.  First-principles and experimental investigation of the morphology of layer-structured LiNiO2 and LiCoO2 , 2012 .

[47]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[48]  Yuki Yamada,et al.  Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries - a first principle computational study. , 2012, Physical chemistry chemical physics : PCCP.

[49]  P. Bruce,et al.  Insights into Changes in Voltage and Structure of Li2FeSiO4 Polymorphs for Lithium-Ion Batteries , 2012 .

[50]  Shunqing Wu,et al.  Structural properties and energetics of Li2FeSiO4 polymorphs and their delithiated products from first-principles. , 2012, Physical chemistry chemical physics : PCCP.

[51]  Danna Qian,et al.  Recent progress in cathode materials research for advanced lithium ion batteries , 2012 .

[52]  K. Leung First Principles Modeling of the Initial Stages of Organic Solvent Decomposition on Li(x)Mn(2)O(4) (100) Surfaces , 2012, 1209.3428.

[53]  Anton Van der Ven,et al.  Thermodynamics of Lithium in TiO2(B) from First Principles , 2012 .

[54]  Dong-Hwa Seo,et al.  Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery , 2012 .

[55]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[56]  S. Park,et al.  Atomistic Simulation Study of Mixed-Metal Oxide (LiNi1/3Co1/3Mn1/3O2) Cathode Material for Lithium Ion Battery , 2012 .

[57]  S. Pennycook,et al.  Simultaneous enhancement of electronic and Li+ ion conductivity in LiFePO4 , 2012 .

[58]  P. He,et al.  Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries , 2012 .

[59]  A. Kuwabara,et al.  A High-Coincidence Twin Boundary in Lithium Battery Material LiCoO 2 , 2012 .

[60]  Anton Van der Ven,et al.  Crystal Structure, Energetics, And Electrochemistry of Li2FeSiO4 Polymorphs from First Principles Calculations , 2012 .

[61]  M. Johannes,et al.  First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4 , 2012, 1201.4069.

[62]  K. Kang,et al.  Polymorphism and phase transformations of Li2−xFeSiO4(0⩽x⩽2) from first principles , 2011 .

[63]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[64]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[65]  P. Bruce,et al.  Polymorphism in Li2(Fe,Mn)SiO4: A combined diffraction and NMR study , 2011 .

[66]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[67]  G. Seifert,et al.  Atomistic investigation of Li+ diffusion pathways in the olivine LiFePO4 cathode material , 2011 .

[68]  H. Ahn,et al.  Ab initio calculations on Li-ion migration in Li2FeSiO4 cathode material with a P21 symmetry structure , 2011 .

[69]  M. Armand,et al.  Comparative computational investigation of N and F substituted polyoxoanionic compounds: The case of Li2FeSiO4 electrode material , 2011 .

[70]  J. Tarascon,et al.  A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. , 2011, Nature materials.

[71]  J. Tse,et al.  Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. , 2011, The journal of physical chemistry. A.

[72]  Yong‐Sheng Hu,et al.  Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. , 2011, Physical chemistry chemical physics : PCCP.

[73]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[74]  M. Hirayama,et al.  A lithium superionic conductor. , 2011, Nature materials.

[75]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[76]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[77]  Yong Yang,et al.  Recent advances in the research of polyanion-type cathode materials for Li-ion batteries , 2011 .

[78]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[79]  Haegyeom Kim,et al.  Neutron and X-ray Diffraction Study of Pyrophosphate-Based Li2–xMP2O7 (M = Fe, Co) for Lithium Rechargeable Battery Electrodes , 2011 .

[80]  G. Henkelman,et al.  Calculations of Li-Ion Diffusion in Olivine Phosphates , 2011 .

[81]  S. Pennycook,et al.  Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4. , 2011, Physical review letters.

[82]  Anubhav Jain,et al.  Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing , 2011 .

[83]  P. Bruce,et al.  Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. , 2011, Journal of the American Chemical Society.

[84]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[85]  Robert Dominko,et al.  Silicate cathodes for lithium batteries: alternatives to phosphates? , 2011 .

[86]  Anti Liivat,et al.  Li-ion migration in Li2FeSiO4-related cathode materials: A DFT study , 2011 .

[87]  Miaofang Chi,et al.  Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study , 2011 .

[88]  R. Benedek,et al.  Simulation of the surface structure of lithium manganese oxide spinel , 2011 .

[89]  Y. Koyama,et al.  Theoretical Fingerprints of Transition Metal L2,3 XANES and ELNES for Lithium Transition Metal Oxides by ab Initio Multiplet Calculations , 2011 .

[90]  Khang Hoang,et al.  Tailoring Native Defects in LiFePO4: Insights from First-Principles Calculations , 2011, 1105.3492.

[91]  L. Nazar,et al.  Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials , 2011 .

[92]  A. Kuwabara,et al.  Oxygen-vacancy ordering at surfaces of lithium manganese(III,IV) oxide spinel nanoparticles. , 2011, Angewandte Chemie.

[93]  F. Du,et al.  First-Principles Calculations on the LiMSO4F/MSO4F (M = Fe, Co, and Ni) Systems , 2011 .

[94]  N. Holzwarth,et al.  Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates , 2011 .

[95]  Stefan Adams,et al.  Simulated defect and interface engineering for high power Li electrode materials , 2011 .

[96]  P. Bruce,et al.  The lithium intercalation process in the low-voltage lithium battery anode Li(1+x)V(1-x)O2. , 2011, Nature materials.

[97]  S. Kerisit,et al.  Lithium diffusion in Li4Ti5O12 at high temperatures , 2011 .

[98]  Ran Liu,et al.  Heterogeneous nanostructured electrode materials for electrochemical energy storage. , 2011, Chemical communications.

[99]  M. Whittingham,et al.  Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries , 2011 .

[100]  S. Lebègue,et al.  Hybrid Density Functional Calculations and Molecular Dynamics Study of Lithium Fluorosulphate, A Cathode Material for Lithium-Ion Batteries , 2011 .

[101]  P. Ngoepe,et al.  Amorphization and recrystallization study of lithium insertion into manganese dioxide. , 2011, Physical chemistry chemical physics : PCCP.

[102]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[103]  Eric Bousquet,et al.  LiMSO(4)F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope. , 2010, Physical chemistry chemical physics : PCCP.

[104]  Ž. Šljivančanin,et al.  Transition from Mn(4+) to Mn(3+) induced by surface reconstruction at λ-MnO(2)(001). , 2010, The Journal of chemical physics.

[105]  S. C. Parker,et al.  Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study , 2010 .

[106]  C. Grey,et al.  Linking local environments and hyperfine shifts: a combined experimental and theoretical (31)P and (7)Li solid-state NMR study of paramagnetic Fe(III) phosphates. , 2010, Journal of the American Chemical Society.

[107]  S. Kerisit,et al.  Computer Simulation of the Phase Stabilities of Lithiated TiO2 Polymorphs , 2010 .

[108]  A. Yamada,et al.  New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. , 2010, Journal of the American Chemical Society.

[109]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[110]  Xuejie Huang,et al.  Structural, electronic and Li diffusion properties of LiFeSO4F , 2010 .

[111]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[112]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[113]  B. Xu,et al.  Factors affecting Li mobility in spinel LiMn2O4—A first-principles study by GGA and GGA+U methods , 2010 .

[114]  M Miskufova,et al.  Advances in computational studies of energy materials , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  Y. Meng,et al.  Electronic, Structural, and Electrochemical Properties of LiNixCuyMn2–x–yO4 (0 < x < 0.5, 0 < y < 0.5) High-Voltage Spinel Materials , 2010 .

[116]  Kevin Leung,et al.  Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. , 2010, Physical chemistry chemical physics : PCCP.

[117]  R. Dominko,et al.  6Li MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs. , 2010, Chemical communications.

[118]  M. Koudriachova Enhanced Li-Transport on the Nanoscale: TiO2-B Nanowires , 2010 .

[119]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[120]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[121]  Stefan Adams,et al.  Lithium ion pathways in LiFePO4 and related olivines , 2010 .

[122]  M. Islam,et al.  Anti-Site Defects and Ion Migration in the LiFe0.5Mn0.5PO4 Mixed-Metal Cathode Material† , 2010 .

[123]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[124]  Hai-Qing Lin,et al.  Structural, Electronic, and Electrochemical Properties of Cathode Materials Li2MSiO4 (M =Mn, Fe, and Co): Density Functional Calculations , 2010 .

[125]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[126]  S. Woodley,et al.  Modelling nano-clusters and nucleation. , 2010, Physical chemistry chemical physics : PCCP.

[127]  W. Jaegermann,et al.  Structure, Electronic Structure and Defect Formation Energies of LixCo1-yNiyO2 as a Function of x (0 , 2009 .

[128]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[129]  O. Borodin,et al.  A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes. , 2009, Physical chemistry chemical physics : PCCP.

[130]  A. Selloni,et al.  Structure and Stability of TiO2-B Surfaces: A Density Functional Study , 2009 .

[131]  M. Islam,et al.  Li2MnSiO4 Lithium Battery Material: Atomic-Scale Study of Defects, Lithium Mobility, and Trivalent Dopants , 2009 .

[132]  S. C. Parker,et al.  Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .

[133]  M. R. Palacín Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[134]  G. Ceder,et al.  Tailoring the Morphology of LiCoO2: A First Principles Study , 2009 .

[135]  J. Gale,et al.  A first principles investigation of lithium intercalation in TiO2-B , 2009 .

[136]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[137]  Rahul Malik,et al.  Phase diagram and electrochemical properties of mixed olivines from first-principles calculations , 2009 .

[138]  M. Ben Yahia,et al.  Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations. , 2009, The Journal of chemical physics.

[139]  W. Jaegermann,et al.  Changes in the crystal and electronic structure of LiCoO(2) and LiNiO(2) upon Li intercalation and de-intercalation. , 2009, Physical chemistry chemical physics : PCCP.

[140]  I. Baraille,et al.  Surface Properties of LiCoO2 Investigated by XPS Analyses and Theoretical Calculations , 2009 .

[141]  P. Ngoepe,et al.  Predicting the electrochemical properties of MnO2 nanomaterials used in rechargeable li batteries: simulating nanostructure at the atomistic level. , 2009, Journal of the American Chemical Society.

[142]  Yong Yang,et al.  Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe, Co, Ni) : A GGA and GGA + U study , 2009 .

[143]  Arumugam Manthiram,et al.  Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries , 2008 .

[144]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[145]  Peter G. Bruce,et al.  Energy storage beyond the horizon: Rechargeable lithium batteries , 2008 .

[146]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[147]  Craig A. J. Fisher,et al.  Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior , 2008 .

[148]  L. Dupont,et al.  On the Energetic Stability and Electrochemistry of Li2MnSiO4 Polymorphs , 2008 .

[149]  Yoyo Hinuma,et al.  Temperature-concentration phase diagram of P 2 -Na x CoO 2 from first-principles calculations , 2008 .

[150]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[151]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[152]  Si-Young Choi,et al.  Atomic-scale visualization of antisite defects in LiFePO4. , 2008, Physical review letters.

[153]  C. Fisher,et al.  Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour , 2008 .

[154]  M. Armand,et al.  Building better batteries , 2008, Nature.

[155]  Peter Y. Zavalij,et al.  The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications , 2008 .

[156]  John B. Goodenough,et al.  Cathode materials: A personal perspective , 2007 .

[157]  Y. Meng,et al.  First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential , 2007 .

[158]  Linda F. Nazar,et al.  Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 , 2007 .

[159]  Minsheng Lei,et al.  Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel , 2007 .

[160]  J. Wolfenstine Electrical conductivity of doped LiCoPO4 , 2006 .

[161]  Jean-Marie Tarascon,et al.  On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) , 2006 .

[162]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[163]  Gerbrand Ceder,et al.  Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies , 2006 .

[164]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[165]  Christian Masquelier,et al.  Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites , 2006 .

[166]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[167]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[168]  Y. Meng,et al.  High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution , 2005 .

[169]  Jean-Marie Tarascon,et al.  Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M = Fe , Mn) Electrode Materials , 2005 .

[170]  Y. Yoon,et al.  Structural and electrochemical properties of Li1+xNi0.5Mn0.5O2+δ (0 ≤ x ≤ 0.7) cathode materials for lithium-ion batteries , 2005 .

[171]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[172]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[173]  N. Sammes,et al.  Raman spectroscopy of superionic Ti-doped Li3Fe2(PO4)3 and LiNiPO4 structures , 2004 .

[174]  Xuejie Huang,et al.  Ab initio molecular-dynamics studies on LixMn2O4 as cathode material for lithium secondary batteries , 2004 .

[175]  G. Ceder,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[176]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[177]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[178]  N. Ishizawa,et al.  The effect of mixed Mn valences on Li migration in LiMn2O4 spinel: A molecular dynamics study , 2004 .

[179]  J. Gale,et al.  Structural and electronic properties of the layered LiNi0.5Mn0.5O2 lithium battery material , 2003 .

[180]  K. Schwarz,et al.  Solid state calculations using WIEN2k , 2003 .

[181]  K. Kawamura,et al.  Structural disorder along the lithium diffusion pathway in cubically stabilized lithium manganese spinel II. Molecular dynamics calculation , 2003 .

[182]  Anton Van der Ven,et al.  First-Principles Investigation of Phase Stability in the O2-LiCoO2 System , 2003 .

[183]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[184]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[185]  Anton Van der Ven,et al.  First-principles calculations of lithium ordering and phase stability on Li x NiO 2 , 2002 .

[186]  K. Kawamura,et al.  Influence of Covalent Character on High Li Ion Conductivity in a Perovskite-Type Li Ion Conductor: Prediction from a Molecular Dynamics Simulation of La0.6Li0.2TiO3 , 2002 .

[187]  Gerbrand Ceder,et al.  Charge, Potential, and Phase Stability of Layered Li ( Ni0.5Mn0.5 ) O 2 , 2002 .

[188]  Bartolomeo Civalleri,et al.  Hartree–Fock geometry optimisation of periodic systems with the Crystal code , 2001 .

[189]  Gerbrand Ceder,et al.  Lithium diffusion mechanisms in layered intercalation compounds , 2001 .

[190]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[191]  M. Atanasov,et al.  Electronic Structure, Chemical Bonding, and Vibronic Coupling in MnIV/MnIII Mixed Valent LixMn2O4 Spinels and Their Effect on the Dynamics of Intercalated Li: A Cluster Study Using DFT , 2000 .

[192]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[193]  Anton Van der Ven,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[194]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[195]  M. Islam,et al.  Atomistic Simulation Studies of Lithium and Proton Insertion in Spinel Lithium Manganates , 1997 .

[196]  John B. Goodenough,et al.  Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation , 1997 .

[197]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[198]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[199]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[200]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[201]  J. Harding Computer simulation of defects in ionic solids , 1990 .

[202]  John B. Goodenough,et al.  Lithium mobility in the layered oxide Li1−xCoO2 , 1985 .

[203]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[204]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[205]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[206]  W. L. Worrell,et al.  A thermodynamic study of sodium-intercalated TaS2 and TiS2 , 1979 .

[207]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[208]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[209]  Yong Yang,et al.  First-Principles Investigations on the Na2MnPO4F as a Cathode Material for Na-Ion Batteries , 2013 .

[210]  Kyeongjae Cho,et al.  Multicomponent Silicate Cathode Materials for Rechargeable Li-Ion Batteries: An Ab Initio Study , 2013 .

[211]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[212]  Stefan Adams,et al.  Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .

[213]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[214]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[215]  N. Ishizawa,et al.  Diffusion of Li atoms in LiMn2O4 - A structural point of view - , 2009 .

[216]  Palani Balaya,et al.  Anisotropy of Electronic and Ionic Transport in LiFePO4 Single Crystals , 2007 .

[217]  L. Nazar,et al.  Nanostructured materials for lithium-ion batteries: surface conductivity vs. bulk ion/electron transport. , 2007, Faraday discussions.

[218]  PAPER www.rsc.org/materials | Journal of Materials Chemistry , 2005 .

[219]  Y. Koyama,et al.  First principles calculations of formation energies and electronic structures of defects in oxygen-deficient LiMn2O4 , 2003 .

[220]  J. Gale,et al.  Calculated cell discharge curve for lithium batteries with a V2O5 cathode , 2000 .

[221]  Anton Van der Ven,et al.  Lithium Diffusion in Layered Li x CoO2 , 1999 .

[222]  C. R. A. Catlow,et al.  Computer modelling in inorganic crystallography , 1997 .

[223]  M. R. Palacín New British Standards , 1979 .