The Fourier Transform for Certain HyperKähler Fourfolds

Using a codimension-1 algebraic cycle obtained from the Poincare line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring CH∗(A). By using a codimension-2 algebraic cycle representing the Beauville-Bogomolov class, we give evidence for the existence of a similar decomposition for the Chow ring of hyperKahler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. We indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.

[1]  Giuseppe Ancona Décomposition de motifs abéliens , 2013, 1305.2874.

[2]  C. Voisin Chow Rings, Decomposition of the Diagonal, and the Topology of Families , 2014 .

[3]  Ulrike Riess On the Chow ring of birational irreducible symplectic varieties , 2013, 1304.4404.

[4]  Qizheng Yin,et al.  On a question of O'Grady about modified diagonals , 2013, 1311.1185.

[5]  K. O’Grady Computations with modified diagonals , 2013, 1311.0757.

[6]  L. Fu Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi-Yau complete intersections , 2012, 1209.5616.

[7]  M. Shen Surfaces with involution and Prym constructions , 2012, 1209.5457.

[8]  D. Huybrechts Symplectic automorphisms of K3 surfaces of arbitrary order , 2012, 1205.3433.

[9]  C. Voisin Symplectic involutions of K3 surfaces act trivially on CH_0 , 2012, 1204.6684.

[10]  Charles Vial Algebraic cycles and fibrations , 2012, Documenta Mathematica.

[11]  Charles Vial Remarks on motives of abelian type , 2011, 1112.1080.

[12]  B. Moonen On the Chow motive of an abelian scheme with non-trivial endomorphisms , 2011, 1110.4264.

[13]  E. Markman The Beauville-Bogomolov class as a characteristic class , 2011, 1105.3223.

[14]  M. Shen ON RELATIONS AMONG 1-CYCLES ON CUBIC HYPERSURFACES , 2011, 1102.2550.

[15]  C. Voisin Chow rings and decomposition theorems for families of K3 surfaces and Calabi-Yau hypersurfaces , 2011, 1102.1607.

[16]  P. O'Sullivan Algebraic cycles on an abelian variety , 2009, 0908.0626.

[17]  Charles Vial PROJECTORS ON THE INTERMEDIATE ALGEBRAIC JACOBIANS , 2009, 0907.3539.

[18]  Izzet Coskun,et al.  Rational Curves on Smooth Cubic Hypersurfaces , 2009 .

[19]  C. Voisin Intrinsic pseudovolume forms and K -correspondences , 2008 .

[20]  Ekaterina Amerik,et al.  A computation of invariants of a rational self-map , 2007, 0707.3947.

[21]  C. Voisin,et al.  Potential density of rational points on the variety of lines of a cubic fourfold , 2007, 0707.3948.

[22]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[23]  A. Rapagnetta On the Beauville form of the known irreducible symplectic varieties , 2006, math/0606409.

[24]  P. O'Sullivan The structure of certain rigid tensor categories , 2005 .

[25]  Shungen Kimura Chow groups are finite dimensional, in some sense , 2005 .

[26]  A. Beauville Algebraic Cycles and Motives: On the Splitting of the Bloch–Beilinson Filtration , 2004, math/0403356.

[27]  D. Huybrechts The Kähler cone of a compact hyperkähler manifold , 2003 .

[28]  A. Beauville ON THE CHOW RING OF A K3 SURFACE , 2001, math/0109063.

[29]  James D. Lewis Lectures on algebraic cycles , 2001 .

[30]  M. D. Cataldo,et al.  The Chow Groups and the Motive of the Hilbert Scheme of Points on a Surface , 2000, math/0005249.

[31]  A. Căldăraru Derived Categories of Twisted Sheaves on Calabi-Yau Manifolds , 2000 .

[32]  Daniela Hahn Correspondences , 1998, Cerebrovascular Diseases.

[33]  D. Huybrechts,et al.  The geometry of moduli spaces of sheaves , 1997 .

[34]  D. Huybrechts Birational symplectic manifolds and their deformations , 1996, alg-geom/9601015.

[35]  F. Bogomolov On the cohomology ring of a simple hyperkähler manifold (on the results of Verbitsky) , 1996 .

[36]  K. O’Grady The weight-two hodge structure of moduli spaces of sheaves on A K3 surface , 1995, alg-geom/9510001.

[37]  B. Gross,et al.  The modified diagonal cycle on the triple product of a pointed curve , 1995 .

[38]  U. Jannsen Motivic sheaves and filtrations on Chow groups , 1994 .

[39]  Jacob Murre,et al.  On a conjectural filtration on the Chow groups of an algebraic variety , 1993 .

[40]  J. Murre,et al.  Motivic decomposition of abelian schemes and the Fourier transform. , 1991 .

[41]  J. Murre On the motive of an algebraic surface. , 1990 .

[42]  A. Beilinson Height pairing between algebraic cycles , 1987 .

[43]  A. Fujiki On the de Rham Cohomology Group of a Compact Kähler Symplectic Manifold , 1987 .

[44]  A. Beauville Sur l'anneau de chow d'une variété abélienne , 1986 .

[45]  C. Voisin Théorème de Torelli pour les cubiques de ℙ5 , 1986 .

[46]  V. Srinivas,et al.  REMARKS ON CORRESPONDENCES AND ALGEBRAIC CYCLES , 1983 .

[47]  A. Beauville,et al.  Variétés Kähleriennes dont la première classe de Chern est nulle , 1983 .

[48]  A. Beauville Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne , 1983 .

[49]  A. A. Rojtman The Torsion of the Group of 0-Cycles Modulo Rational Equivalence , 1980 .

[50]  F. Bogomolov Hamiltonian Kählerian manifolds , 1978 .

[51]  S. Kleiman,et al.  Foundations of the theory of Fano schemes , 1977 .

[52]  P. Griffiths,et al.  The intermediate Jacobian of the cubic threefold , 1972 .

[53]  Ju. Manin,et al.  CORRESPONDENCES, MOTIFS AND MONOIDAL TRANSFORMATIONS , 1968 .