CdS Nanoribbon‐Based Resistive Switches with Ultrawidely Tunable Power by Surface Charge Transfer Doping

[1]  Young Jae Kwon,et al.  Pt/Ta2O5/HfO2−x/Ti Resistive Switching Memory Competing with Multilevel NAND Flash , 2015, Advanced materials.

[2]  Kai Sun,et al.  Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores. , 2016, ACS nano.

[3]  R Waser,et al.  SET kinetics of electrochemical metallization cells: influence of counter-electrodes in SiO2/Ag based systems , 2017, Nanotechnology.

[4]  Michael Kozicki,et al.  Non-volatile memories: Organic memristors come of age. , 2017, Nature materials.

[5]  D. Strukov,et al.  Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions , 2014, Nature Communications.

[6]  Catherine Dubourdieu,et al.  A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States. , 2016, Nano letters.

[7]  Shui-Tong Lee,et al.  MoO3 Nanodots Decorated CdS Nanoribbons for High-Performance, Homojunction Photovoltaic Devices on Flexible Substrates. , 2015, Nano letters.

[8]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[9]  B. Pan,et al.  Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition. , 2015, Journal of the American Chemical Society.

[10]  G. Cicero,et al.  A New Theoretical Insight Into ZnO NWs Memristive Behavior. , 2016, Nano letters.

[11]  D. Strukov,et al.  Stateful characterization of resistive switching TiO2 with electron beam induced currents , 2017, Nature Communications.

[12]  Yi Xie,et al.  Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. , 2015, Journal of the American Chemical Society.

[13]  James M Tour,et al.  Electronic two-terminal bistable graphitic memories. , 2008, Nature materials.

[14]  Yu-Lun Chueh,et al.  Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: geometry architecture engineering for nonvolatile memory. , 2017, Nanoscale.

[15]  H. Jeong,et al.  Direct Observation of Conducting Nanofilaments in Graphene‐Oxide‐Resistive Switching Memory , 2015 .

[16]  I. Valov Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs) , 2017 .

[17]  Yuchao Yang,et al.  Probing nanoscale oxygen ion motion in memristive systems , 2017, Nature Communications.

[18]  T. Taubner,et al.  Solvothermally Synthesized Sb2Te3 Platelets Show Unexpected Optical Contrasts in Mid-Infrared Near-Field Scanning Microscopy. , 2015, Nano letters.

[19]  R. Waser,et al.  Generic relevance of counter charges for cation-based nanoscale resistive switching memories. , 2013, ACS nano.

[20]  R. Waser,et al.  Effects of Moisture on the Switching Characteristics of Oxide‐Based, Gapless‐Type Atomic Switches , 2012 .

[21]  Du Xiang,et al.  Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus , 2015, Nature Communications.

[22]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[23]  Yihong Wu,et al.  An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions , 2015, Advanced materials.

[24]  Interfacially Engineered High‐Speed Nonvolatile Memories Employing p‐Type Nanoribbons , 2014 .

[25]  Sampat Raj Vadera,et al.  Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen , 2003 .

[26]  T. Schäpers,et al.  Amphoteric nature of Sn in CdS nanowires. , 2014, Nano letters.

[27]  Yongsuk Choi,et al.  Multibit MoS2 Photoelectronic Memory with Ultrahigh Sensitivity , 2016, Advanced materials.

[28]  Harald Schneider,et al.  Quantitative determination of the charge carrier concentration of ion implanted silicon by IR-near-field spectroscopy. , 2010, Optics express.

[29]  F. Wen,et al.  Liquid‐Exfoliated Black Phosphorous Nanosheet Thin Films for Flexible Resistive Random Access Memory Applications , 2016 .

[30]  James M Tour,et al.  Flexible Nanoporous WO3-x Nonvolatile Memory Device. , 2016, ACS nano.

[31]  Yu-Lun Chueh,et al.  ZnO1-x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. , 2012, ACS nano.

[32]  A. Liao,et al.  Carbon nanotube network-silicon oxide non-volatile switches , 2014, Nature Communications.

[33]  S. Menzel,et al.  Physics of the Switching Kinetics in Resistive Memories , 2015 .

[34]  Alejandro Strachan,et al.  Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. , 2015, Nature materials.

[35]  F. Miao,et al.  Tunable, Ultralow‐Power Switching in Memristive Devices Enabled by a Heterogeneous Graphene–Oxide Interface , 2014, Advanced materials.

[36]  Ji‐Guang Zhang,et al.  Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries , 2016 .

[37]  L. Luo,et al.  Ultrahigh Mobility of p‐Type CdS Nanowires: Surface Charge Transfer Doping and Photovoltaic Devices , 2013 .

[38]  S. Nau,et al.  Organic Non‐Volatile Resistive Photo‐Switches for Flexible Image Detector Arrays , 2015, Advanced materials.

[39]  T. Mikolajick,et al.  Exploiting Memristive BiFeO3 Bilayer Structures for Compact Sequential Logics , 2014 .

[40]  Che-Wei Chang,et al.  Electrically and Optically Readable Light Emitting Memories , 2014, Scientific Reports.

[41]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[42]  Masakazu Aono,et al.  Mechanism for Conducting Filament Growth in Self‐Assembled Polymer Thin Films for Redox‐Based Atomic Switches , 2016, Advanced materials.

[43]  R. Dittmann,et al.  Resistive Switching Mechanisms on TaOx and SrRuO3 Thin-Film Surfaces Probed by Scanning Tunneling Microscopy. , 2016, ACS nano.

[44]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[45]  Wei D. Lu,et al.  Electrochemical dynamics of nanoscale metallic inclusions in dielectrics , 2014, Nature Communications.

[46]  Xiaodong Chen,et al.  Skin‐Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture , 2016, Advanced materials.

[47]  R. Waser,et al.  Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems. , 2016, Nature nanotechnology.

[48]  Xiaodong Chen,et al.  Sericin for Resistance Switching Device with Multilevel Nonvolatile Memory , 2013, Advanced materials.

[49]  Bowen Zhu,et al.  Resistive Switching Memory Devices Based on Proteins , 2015, Advanced materials.

[50]  Fei Zeng,et al.  Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application. , 2015, Nanoscale.

[51]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .

[52]  Rainer Waser,et al.  Electrochemical Tantalum Oxide for Resistive Switching Memories , 2017, Advanced materials.

[53]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[54]  Lin-Wang Wang,et al.  Formation mechanism and properties of CdS-Ag2S nanorod superlattices. , 2008, ACS nano.

[55]  Y. Chueh,et al.  Self-Selecting Resistive Switching Scheme Using TiO2 Nanorod Arrays , 2017, Scientific Reports.

[56]  Bowen Zhu,et al.  Configurable Resistive Switching between Memory and Threshold Characteristics for Protein‐Based Devices , 2015 .

[57]  He Tian,et al.  In Situ Tuning of Switching Window in a Gate‐Controlled Bilayer Graphene‐Electrode Resistive Memory Device , 2015, Advanced materials.

[58]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[59]  Xiaodong Chen,et al.  Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials , 2017, Advanced materials.

[60]  R. Hillenbrand,et al.  Correlative infrared–electron nanoscopy reveals the local structure–conductivity relationship in zinc oxide nanowires , 2012, Nature Communications.

[61]  A. Javey,et al.  Surface Charge Transfer Doping of III–V Nanostructures , 2013 .

[62]  J. Carey,et al.  Molecular doping and band-gap opening of bilayer graphene. , 2013, ACS nano.

[63]  Shimeng Yu,et al.  Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode. , 2013, Nano letters.

[64]  Wei D. Lu,et al.  On‐Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics , 2018, Advanced materials.

[65]  Wei Huang,et al.  Alcohol-Mediated Resistance-Switching Behavior in Metal-Organic Framework-Based Electronic Devices. , 2016, Angewandte Chemie.

[66]  Wei D. Lu,et al.  Nanoscale electrochemistry using dielectric thin films as solid electrolytes. , 2016, Nanoscale.

[67]  Jiansheng Jie,et al.  Surface Charge Transfer Doping of Low‐Dimensional Nanostructures toward High‐Performance Nanodevices , 2016, Advanced materials.

[68]  Jianlin Liu,et al.  Current self-complianced and self-rectifying resistive switching in Ag-electroded single Na-doped ZnO nanowires. , 2013, Nanoscale.

[69]  Li Ji,et al.  Integrated one diode-one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. , 2014, Nano letters.

[70]  R. Waser,et al.  Redox Reactions at Cu,Ag/Ta2O5 Interfaces and the Effects of Ta2O5 Film Density on the Forming Process in Atomic Switch Structures , 2015 .