Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer

Abstract The reduced-order synchronization problem of two chaotic systems (master–slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.

[1]  H. Nijmeijer,et al.  Partial synchronization: from symmetry towards stability , 2002 .

[2]  Ricardo Femat,et al.  SYNCHRONIZATION OF DYNAMICAL SYSTEMS WITH DIFFERENTE ORDER AND TOPOLOGY , 2006 .

[3]  Ljupco Kocarev,et al.  Generalized synchronization in chaotic systems , 1995, Optics East.

[4]  Alexander S. Poznyak,et al.  Observation of linear systems with unknown inputs via high-order sliding-modes , 2007, Int. J. Syst. Sci..

[5]  M. Hautus Strong detectability and observers , 1983 .

[6]  Michael Rosenblum,et al.  Synchronization and chaotization in interacting dynamical systems , 1995 .

[7]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. I. Methods , 2003 .

[8]  H. Nijmeijer,et al.  Coordination of two robot manipulators based on position measurements only , 2001 .

[9]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Athanasios Gavrielides,et al.  Experimental synchronization of chaos in diode lasers with polarization-rotated feedback and injection. , 2004, Optics letters.

[11]  R. Femat,et al.  Synchronization of chaotic systems with different order. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  J. Kurths,et al.  Heartbeat synchronized with ventilation , 1998, Nature.

[13]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[14]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[15]  Alexander L. Fradkov,et al.  Control of Chaos : Methods and Applications , 2003 .

[16]  Ricardo Femat,et al.  Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization , 2000 .

[17]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[18]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[19]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[20]  M.R.A. Brunt Co-ordination of redundant systems , 1998 .

[21]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[22]  L. Fridman,et al.  Higher‐order sliding‐mode observer for state estimation and input reconstruction in nonlinear systems , 2008 .

[23]  Manuel Graña,et al.  Nonzero error synchronization of chaotic systems via dynamic coupling , 2003 .

[24]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. II. Applications , 2004 .

[25]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[26]  S. Bowong Stability analysis for the synchronization of chaotic systems with different order: application to secure communications , 2004 .

[27]  Jürgen Kurths,et al.  Phase Synchronization in Regular and Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[28]  S. S. Yang,et al.  Generalized Synchronization in Chaotic Systems , 1998 .

[29]  L. Wilkens,et al.  Synchronization of the Noisy Electrosensitive Cells in the Paddlefish , 1999 .

[30]  R. Femat,et al.  On the chaos synchronization phenomena , 1999 .