Selection Strategies for Ambiguous Graph Matching by Evolutionary Optimisation

This paper considers how ambiguous graph matching can be realised using a hybrid genetic algorithm. The problem we address is how to maximise the solution yield of the genetic algorithm when the available attributes are ambiguous. We focus on the role of the selection operator. A multi-modal evolutionary optimisation framework is proposed, which is capable of simultaneously producing several good alternative solutions. Unlike other multi-modal genetic algorithms, the one reported here requires no extra parameters: solution yields are maximised by removing bias in the selection step, while optimisation performance is maintained by a local search step.

[1]  Edwin R. Hancock,et al.  Efficient relational matching with local edit distance , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[2]  V. Rao Vemuri,et al.  Multiniche Crowding in Genetic Algorithms and Its Application to the Assembly of DNA Restriction-Fragments , 1994, Evolutionary Computation.

[3]  Edwin R. Hancock,et al.  Inexact graph matching using genetic search , 1997, Pattern Recognit..

[4]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[5]  Martina Gorges-Schleuter,et al.  ASPARAGOS, A Parallel Genetic Algorithm and Population Genetics , 1989, Parallelism, Learning, Evolution.

[6]  William J. Christmas,et al.  Probabilistic relaxation for matching problems in computer vision , 1993, 1993 (4th) International Conference on Computer Vision.

[7]  Robert M. Haralick,et al.  A Metric for Comparing Relational Descriptions , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[9]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[10]  Prügel-Bennett,et al.  Analysis of genetic algorithms using statistical mechanics. , 1994, Physical review letters.

[11]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[12]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[13]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[14]  Andrew K. C. Wong,et al.  Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[17]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[18]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[19]  Edwin R. Hancock,et al.  Structural Matching by Discrete Relaxation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..