From micro to macro and back: probing near-horizon quantum structures with gravitational waves

Supermassive binaries detectable by the planned space gravitational-wave interferometer LISA might allow us to distinguish black holes from ultracompact horizonless objects, even for certain models motivated by quantum-gravity considerations. We show that a measurement of a very small tidal Love number with accuracy (as achievable by detecting ‘golden binaries’) may also allow us to distinguish between different models of these exotic compact objects, even when taking into account an intrinsic uncertainty in the object radius putatively due to quantum mechanics. We argue that there is no conceptual obstacle in performing these measurements, the main challenge remains the detectability of small tidal effects and an accurate waveform modelling.

[1]  N. Yunes,et al.  Can We Probe Planckian Corrections at the Horizon Scale with Gravitational Waves? , 2018, Physical review letters.

[2]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[3]  Duncan A. Brown,et al.  Erratum: Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817 [Phys. Rev. Lett. 121, 091102 (2018)]. , 2018, Physical review letters.

[4]  A. Samajdar,et al.  Waveform systematics for binary neutron star gravitational wave signals: Effects of the point-particle baseline and tidal descriptions , 2018, Physical Review D.

[5]  B. P. Abbott,et al.  Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.

[6]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[7]  Duncan A. Brown,et al.  Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.

[8]  T. Hinderer,et al.  Observing and measuring the neutron-star equation-of-state in spinning binary neutron star systems , 2018, Classical and Quantum Gravity.

[9]  V. Cardoso,et al.  Probing Planckian Corrections at the Horizon Scale with LISA Binaries. , 2017, Physical review letters.

[10]  D. Sarkar,et al.  The quantum fate of black hole horizons , 2017, 1712.09914.

[11]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[12]  V. Cardoso,et al.  Tests for the existence of black holes through gravitational wave echoes , 2017, 1709.01525.

[13]  G. Dibitetto,et al.  Black holes as bubbles of AdS , 2017, Journal of High Energy Physics.

[14]  V. Cardoso,et al.  Publisher's Note: Testing strong-field gravity with tidal Love numbers [Phys. Rev. D 95, 084014 (2017)] , 2017 .

[15]  A. Buonanno,et al.  Distinguishing Boson Stars from Black Holes and Neutron Stars from Tidal Interactions in Inspiraling Binary Systems , 2017, 1704.08651.

[16]  V. Cardoso,et al.  Testing strong-field gravity with tidal Love numbers , 2017, 1701.01116.

[17]  N. Afshordi,et al.  Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons , 2016, 1612.00266.

[18]  C. Palenzuela,et al.  Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale , 2016, 1608.08637.

[19]  V. Cardoso,et al.  Erratum: Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? [Phys. Rev. Lett. 116, 171101 (2016)]. , 2016, Physical review letters.

[20]  N. Uchikata,et al.  Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells , 2016, 1607.03593.

[21]  Rafael A. Porto The tune of love and the nature(ness) of spacetime , 2016, 1606.08895.

[22]  Vitor Cardoso,et al.  Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? , 2016, Physical review letters.

[23]  L. Garay,et al.  Where Does the Physics of Extreme Gravitational Collapse Reside , 2015, 1510.04957.

[24]  L. Gualtieri,et al.  Tidal Love numbers of a slowly spinning neutron star , 2015, 1509.02171.

[25]  Paolo Pani I-Love-Q relations for gravastars and the approach to the black-hole limit , 2015, 1506.06050.

[26]  N. Gürlebeck No-hair theorem for black holes in astrophysical environments. , 2015, Physical review letters.

[27]  L. Gualtieri,et al.  Tidal deformations of a spinning compact object , 2015, 1503.07365.

[28]  E. Poisson Tidal deformation of a slowly rotating black hole , 2014, 1411.4711.

[29]  C. Will,et al.  Gravity: Newtonian, Post-Newtonian, Relativistic , 2014 .

[30]  B. Lackey,et al.  Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors , 2014, 1402.5156.

[31]  Marc Favata Systematic parameter errors in inspiraling neutron star binaries. , 2013, Physical review letters.

[32]  L. Gualtieri,et al.  Constraining the equation of state of nuclear matter with gravitational wave observations: Tidal deformability and tidal disruption , 2013, 1310.5381.

[33]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[34]  T. Damour,et al.  Relativistic tidal properties of neutron stars , 2009, 0906.0096.

[35]  T. Hinderer ERRATUM: “TIDAL LOVE NUMBERS OF NEUTRON STARS” (2008, ApJ, 677, 1216) , 2009 .

[36]  E. Poisson,et al.  Relativistic theory of tidal Love numbers , 2009, 0906.1366.

[37]  L. Susskind,et al.  Fast Scram blers , 2008, 0808.2096.

[38]  T. Hinderer Tidal Love Numbers of Neutron Stars , 2007, 0711.2420.

[39]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[40]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[41]  J. Lattimer,et al.  Neutron star observations: Prognosis for equation of state constraints , 2006, astro-ph/0612440.

[42]  G. Lovelace,et al.  Tidal coupling of a schwarzschild black hole and circularly orbiting moon , 2005, gr-qc/0505156.

[43]  S. Mathur The fuzzball proposal for black holes: an elementary review , 2005, hep-th/0502050.

[44]  P. Mazur,et al.  Gravitational vacuum condensate stars. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Chandrasekhar The highly collapsed configurations of a stellar mass (Second paper) , 1935 .