From micro to macro and back: probing near-horizon quantum structures with gravitational waves
暂无分享,去创建一个
V. Cardoso | L. Gualtieri | V. Ferrari | P. Pani | T. Abdelsalhin | A. Maselli | P. Pani
[1] N. Yunes,et al. Can We Probe Planckian Corrections at the Horizon Scale with Gravitational Waves? , 2018, Physical review letters.
[2] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[3] Duncan A. Brown,et al. Erratum: Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817 [Phys. Rev. Lett. 121, 091102 (2018)]. , 2018, Physical review letters.
[4] A. Samajdar,et al. Waveform systematics for binary neutron star gravitational wave signals: Effects of the point-particle baseline and tidal descriptions , 2018, Physical Review D.
[5] B. P. Abbott,et al. Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.
[6] D Huet,et al. GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.
[7] Duncan A. Brown,et al. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.
[8] T. Hinderer,et al. Observing and measuring the neutron-star equation-of-state in spinning binary neutron star systems , 2018, Classical and Quantum Gravity.
[9] V. Cardoso,et al. Probing Planckian Corrections at the Horizon Scale with LISA Binaries. , 2017, Physical review letters.
[10] D. Sarkar,et al. The quantum fate of black hole horizons , 2017, 1712.09914.
[11] B. A. Boom,et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.
[12] V. Cardoso,et al. Tests for the existence of black holes through gravitational wave echoes , 2017, 1709.01525.
[13] G. Dibitetto,et al. Black holes as bubbles of AdS , 2017, Journal of High Energy Physics.
[14] V. Cardoso,et al. Publisher's Note: Testing strong-field gravity with tidal Love numbers [Phys. Rev. D 95, 084014 (2017)] , 2017 .
[15] A. Buonanno,et al. Distinguishing Boson Stars from Black Holes and Neutron Stars from Tidal Interactions in Inspiraling Binary Systems , 2017, 1704.08651.
[16] V. Cardoso,et al. Testing strong-field gravity with tidal Love numbers , 2017, 1701.01116.
[17] N. Afshordi,et al. Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons , 2016, 1612.00266.
[18] C. Palenzuela,et al. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale , 2016, 1608.08637.
[19] V. Cardoso,et al. Erratum: Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? [Phys. Rev. Lett. 116, 171101 (2016)]. , 2016, Physical review letters.
[20] N. Uchikata,et al. Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells , 2016, 1607.03593.
[21] Rafael A. Porto. The tune of love and the nature(ness) of spacetime , 2016, 1606.08895.
[22] Vitor Cardoso,et al. Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? , 2016, Physical review letters.
[23] L. Garay,et al. Where Does the Physics of Extreme Gravitational Collapse Reside , 2015, 1510.04957.
[24] L. Gualtieri,et al. Tidal Love numbers of a slowly spinning neutron star , 2015, 1509.02171.
[25] Paolo Pani. I-Love-Q relations for gravastars and the approach to the black-hole limit , 2015, 1506.06050.
[26] N. Gürlebeck. No-hair theorem for black holes in astrophysical environments. , 2015, Physical review letters.
[27] L. Gualtieri,et al. Tidal deformations of a spinning compact object , 2015, 1503.07365.
[28] E. Poisson. Tidal deformation of a slowly rotating black hole , 2014, 1411.4711.
[29] C. Will,et al. Gravity: Newtonian, Post-Newtonian, Relativistic , 2014 .
[30] B. Lackey,et al. Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors , 2014, 1402.5156.
[31] Marc Favata. Systematic parameter errors in inspiraling neutron star binaries. , 2013, Physical review letters.
[32] L. Gualtieri,et al. Constraining the equation of state of nuclear matter with gravitational wave observations: Tidal deformability and tidal disruption , 2013, 1310.5381.
[33] B. Lackey,et al. Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.
[34] T. Damour,et al. Relativistic tidal properties of neutron stars , 2009, 0906.0096.
[35] T. Hinderer. ERRATUM: “TIDAL LOVE NUMBERS OF NEUTRON STARS” (2008, ApJ, 677, 1216) , 2009 .
[36] E. Poisson,et al. Relativistic theory of tidal Love numbers , 2009, 0906.1366.
[37] L. Susskind,et al. Fast Scram blers , 2008, 0808.2096.
[38] T. Hinderer. Tidal Love Numbers of Neutron Stars , 2007, 0711.2420.
[39] T. Hinderer,et al. Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.
[40] P. Hayden,et al. Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.
[41] J. Lattimer,et al. Neutron star observations: Prognosis for equation of state constraints , 2006, astro-ph/0612440.
[42] G. Lovelace,et al. Tidal coupling of a schwarzschild black hole and circularly orbiting moon , 2005, gr-qc/0505156.
[43] S. Mathur. The fuzzball proposal for black holes: an elementary review , 2005, hep-th/0502050.
[44] P. Mazur,et al. Gravitational vacuum condensate stars. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[45] S. Chandrasekhar. The highly collapsed configurations of a stellar mass (Second paper) , 1935 .