Sampling in Precision Agriculture

This chapter considers the importance of spatial scale in sampling and investigates various methods by which the variogram can be used to determine an appropriate sampling scheme or interval for grid sampling. When no prior information is available on the scale of variation, and the variable of interest is unlikely to be strongly correlated to available ancillary data, a nested survey and analysis provides a first approximation to the variogram and the approximate spatial scale. If the variable of interest appears related to ancillary data such as aerial photographs or elevation, variograms of these data can provide an indication of the likely scale of variation in the soil or crop. Existing variograms of soil or crop properties can be used to determine how many cores of soil or samples from plants should be taken to form a composite (bulked) sample to reduce the local noise. Such variograms can also be used with the kriging equations to determine a grid sampling interval with a specific tolerable error, or an interval of less than half the variogram range can be used to ensure a spatially dependent sample. Finally, if the scale of variation is large in relation to the field size, a variogram estimated by residual maximum likelihood (REML) or standardized variograms from ancillary data can be used to krige data from a small, but spatially dependent sample. Each of the methods investigated is illustrated with a case study.

[1]  Margaret A. Oliver,et al.  Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood , 2007 .

[2]  Alex B. McBratney,et al.  Soil chemical analytical accuracy and costs: implications from precision agriculture , 1998 .

[3]  Anthony N. Pettitt,et al.  Sampling Designs for Estimating Spatial Variance Components , 1993 .

[4]  R. Webster,et al.  Geostatistical analysis of cyst nematodes in soil , 1992 .

[5]  Mike Grundy,et al.  Guidelines for Surveying Soil and Land Resources , 2008 .

[6]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[7]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[8]  E. Aronson,et al.  Theory and method , 1985 .

[9]  R. Webster,et al.  Statistical Methods in Soil and Land Resource Survey. , 1990 .

[10]  David Lamb,et al.  PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops , 2001 .

[11]  R. Webster,et al.  Sample adequately to estimate variograms of soil properties , 1992 .

[12]  W. Youden,et al.  Selection of Efficient Methods for Soil Sampling1 , 1938 .

[13]  M. Oliver,et al.  Determining the spatial scale of variation in soil radon concentration , 1995 .

[14]  R. M. Lark,et al.  Estimating variograms of soil properties by the method‐of‐moments and maximum likelihood , 2000 .

[15]  J. Willers,et al.  Methods of analysis for georeferenced sample counts of tarnished plant bugs in cotton , 2009, Precision Agriculture.

[16]  Eulogio Pardo-Igúzquiza,et al.  Maximum Likelihood Estimation of Spatial Covariance Parameters , 1998 .

[17]  R. Godwin,et al.  A Review of the technologies for mapping within-field variability , 2003 .

[18]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[19]  R. Webster,et al.  Guidelines for surveying soil and land resources, 2nd ed , 2008 .

[20]  Margaret A. Oliver,et al.  Combining Nested and Linear Sampling for Determining the Scale and Form of Spatial Variation of Regionalized Variables , 2010 .

[21]  M. Oliver,et al.  Determining nugget:sill ratios of standardized variograms from aerial photographs to krige sparse soil data , 2008, Precision Agriculture.

[22]  I. Ohlsson Book reviewSite-specific management for agricultural systems: P.C. Robert, R.H. Rust and W.E. Larson (Editors). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, 1995. ISBN 0-89118-127-X, Paperback, 993 pp., US$ 39 , 1996 .

[23]  M. A. Oliver,et al.  A rational strategy for determining the number of cores for bulked sampling of soil , 1997 .

[24]  Denis Marcotte,et al.  Multivariable variogram and its application to the linear model of coregionalization , 1991 .

[25]  A. T. Miesch Variograms and Variance Components in Geochemistry and Ore Evaluation , 1975 .

[26]  John C. Gower Variance component estimation for unbalanced hierarchical classifications , 1962 .

[27]  Alex B. McBratney,et al.  The design of optimal sampling schemes for local estimation and mapping of of regionalized variables—I: Theory and method , 1981 .

[28]  Simon Blackmore,et al.  Precision Farming: An Introduction , 1994 .

[29]  T. M. Burgess,et al.  Sampling and bulking strategies for estimating soil properties in small regions , 1984 .

[30]  M. A. Oliver,et al.  The elucidation of soil pattern in the Wyre Forest of the West Midlands, England. II. Spatial distribution. , 1987 .

[31]  Alex B. McBratney,et al.  The design of optimal sampling schemes for local estimation and mapping of regionalized variables—II: Program and examples☆ , 1981 .

[32]  R. V. Rossel,et al.  Spatial prediction for precision agriculture , 1996 .

[33]  Eulogio Pardo-Igúzquiza,et al.  MLREML4: a program for the inference of the power variogram model by maximum likelihood and restricted maximum likelihood , 1998 .

[34]  Sue J. Welham,et al.  Estimating the spatial scales of regionalized variables by nested sampling, hierarchical analysis of variance and residual maximum likelihood , 2006, Comput. Geosci..