On the stability of the electroweak vacuum in the presence of low-scale seesaw models

[1]  M. Fabbrichesi,et al.  Naturalness redux: The case of the neutrino seesaw mechanism , 2015, 1504.05403.

[2]  J. T. Childers,et al.  Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments , 2015, 1503.07589.

[3]  M. Lindner,et al.  The inverse seesaw in conformal electro-weak symmetry breaking and phenomenological consequences , 2015, 1503.03066.

[4]  S. Antusch,et al.  Testing sterile neutrino extensions of the Standard Model at future lepton colliders , 2015, 1502.05915.

[5]  T. Schwetz,et al.  Updated fit to three neutrino mixing: status of leptonic CP violation , 2014, Journal of High Energy Physics.

[6]  S. Antusch,et al.  Non-unitarity of the leptonic mixing matrix: present bounds and future sensitivities , 2014, 1407.6607.

[7]  A. Abada,et al.  Dark matter in the minimal inverse seesaw mechanism , 2014, 1406.6556.

[8]  M. Weber,et al.  Search for Majorana neutrinos with the first two years of EXO-200 data , 2014, Nature.

[9]  Yong-chao Zhang,et al.  TeV scale universal seesaw, vacuum stability and heavy Higgs , 2014, 1401.6701.

[10]  Tejpreet Singh Golan,et al.  Observation of electron neutrino appearance in a muon neutrino beam. , 2013, Physical review letters.

[11]  C. Weiland,et al.  Sterile neutrinos in leptonic and semileptonic decays , 2013, 1311.2830.

[12]  G F Cao,et al.  Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay. , 2013, Physical review letters.

[13]  Oliver Fischer,et al.  Precision tests of unitarity in leptonic mixing , 2013, 1310.2057.

[14]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[15]  Sourov Roy,et al.  Vacuum Stability constraints on the minimal singlet TeV Seesaw Model , 2012, 1212.3694.

[16]  P. Schwaller,et al.  Leptogenesis , 2008, 0802.2962.

[17]  M. Hartz,et al.  Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam. , 2013, Physical review letters.

[18]  D. Budjáš,et al.  Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment. , 2013, Physical review letters.

[19]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[20]  A. Kobakhidze,et al.  Neutrino masses and Higgs vacuum stability , 2013, 1305.7283.

[21]  S. Hahn,et al.  Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. , 2013, Physical review letters.

[22]  D. Pappadopulo,et al.  A modified naturalness principle and its experimental tests , 2013, 1303.7244.

[23]  R. Nardo,et al.  New constraint on the existence of the μ+ → e+ γ decay. , 2013, Physical review letters.

[24]  M. Decowski,et al.  Limit on neutrinoless ββ decay of 136Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge. , 2012, Physical review letters.

[25]  Manfred Lindner,et al.  Improving electro-weak fits with TeV-scale sterile neutrinos , 2013, 1302.1872.

[26]  S. Hahn,et al.  Electron neutrino and antineutrino appearance in the full MINOS data sample. , 2013, Physical review letters.

[27]  A. Kobakhidze,et al.  Electroweak vacuum (in)stability in an inflationary universe , 2013, 1301.2846.

[28]  C. Weiland,et al.  Tree-level lepton universality violation in the presence of sterile neutrinos: impact for RK and Rπ , 2012, 1211.3052.

[29]  H. Okada,et al.  Higgs signatures in inverse seesaw model at the LHC , 2012, 1209.4803.

[30]  I. Masina Higgs boson and top quark masses as tests of electroweak vacuum stability , 2012, 1209.0393.

[31]  S. Petcov,et al.  Higgs Decays in the Low Scale Type I See-Saw Model , 2012, 1208.3654.

[32]  L. Anchordoqui,et al.  Vacuum stability of Standard Model++ , 2012, 1208.2821.

[33]  N. Okada,et al.  Inverse seesaw neutrino signatures at the LHC and ILC , 2012, 1207.3734.

[34]  J. Chakrabortty,et al.  Constraints on TeV scale Majorana neutrino phenomenology from the Vacuum Stability of the Higgs , 2012, 1207.2027.

[35]  A. Datta,et al.  Vacuum stability constraints and LHC searches for a model with a universal extra dimension , 2012, 1207.0476.

[36]  Yong-chao Zhang,et al.  Vacuum stability and Higgs diphoton decay rate in the Zee-Babu model , 2012, 1212.6272.

[37]  M. Ramsey-Musolf,et al.  Higgs vacuum stability, neutrino mass, and dark matter , 2012, 1210.0491.

[38]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[39]  P. S. Bhupal Dev,et al.  Bounds on TeV seesaw models from LHC Higgs data , 2012, 1207.2756.

[40]  S. Moch,et al.  The top quark and Higgs boson masses and the stability of the electroweak vacuum , 2012, 1207.0980.

[41]  J J Russell,et al.  Search for neutrinoless double-beta decay in 136Xe with EXO-200. , 2012, Physical review letters.

[42]  S. Petcov,et al.  The μ − e conversion in nuclei, μ → eγ, μ → 3e decays and TeV scale see-saw scenarios of neutrino mass generation , 2012, 1205.4671.

[43]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[44]  He Zhang,et al.  Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability , 2012, 1203.3825.

[45]  O. Lebedev On stability of the electroweak vacuum and the Higgs portal , 2012, 1203.0156.

[46]  A. Strumia,et al.  Stabilization of the electroweak vacuum by a scalar threshold effect , 2012, 1203.0237.

[47]  Yong Tang,et al.  Vacuum stability, neutrinos, and dark matter , 2012, 1202.5717.

[48]  A. Strumia,et al.  Higgs mass implications on the stability of the electroweak vacuum , 2011, 1112.3022.

[49]  M. Lindner,et al.  Planck scale boundary conditions and the Higgs mass , 2011, Journal of High Energy Physics.

[50]  R. Betts,et al.  Search for heavy Majorana neutrinos in μ ± μ ± + jets and e ± e ± + jets events in pp collisions at , 2012 .

[51]  J. Valle,et al.  Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw , 2011, 1107.6009.

[52]  S. Petcov,et al.  Low energy signatures of the TeV scale seesaw mechanism , 2011, 1103.6217.

[53]  U. Sarkar,et al.  Leptogenesis with linear, inverse or double seesaw , 2010, 1007.2323.

[54]  S. T. Petcov,et al.  TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν-decay , 2010, 1007.2378.

[55]  J. Menendez,et al.  Neutrinoless double beta decay in seesaw models , 2010, 1005.3240.

[56]  A. Kusenko Sterile neutrinos: The Dark side of the light fermions , 2009, 0906.2968.

[57]  T. Han,et al.  The Search for Heavy Majorana Neutrinos , 2009, 0901.3589.

[58]  S. Antusch,et al.  Non-standard neutrino interactions with matter from physics beyond the Standard Model , 2008, 0807.1003.

[59]  A. Smirnov,et al.  Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation , 2007, 0705.3221.

[60]  A. Simone,et al.  On resonant leptogenesis , 2007, 0705.2183.

[61]  C. Kim,et al.  Extended double seesaw model for neutrino mass spectrum and low scale leptogenesis , 2006, hep-ph/0607072.

[62]  H. Murayama,et al.  Theory of neutrinos: a white paper , 2005, hep-ph/0510213.

[63]  P. Wesson Vacuum Instability , 2004, gr-qc/0407038.

[64]  J. Romão,et al.  Supersymmetric SO10 seesaw mechanism with low B-L scale. , 2005, Physical review letters.

[65]  J. Valle,et al.  Enhanced lepton flavor violation in the supersymmetric inverse seesaw model , 2004, hep-ph/0406040.

[66]  R. Rattazzi,et al.  Weakly coupled Higgsless theories and precision electroweak tests , 2003, hep-ph/0310285.

[67]  S. Glashow,et al.  Cosmological sign of neutrino CP violation , 2002, hep-ph/0208157.

[68]  P. Minkowski /a ~ E~/at a Rate of One out of 10 9 Muon Decays? , 2002 .

[69]  G. Ridolfi,et al.  On the metastability of the standard model vacuum , 2001, hep-ph/0104016.

[70]  J. Casas,et al.  Oscillating neutrinos and ? e, ? , 2001, hep-ph/0103065.

[71]  D.R.T. Jones,et al.  The Standard model effective potential at two loops , 1997, hep-ph/0111190.

[72]  G. Altarelli,et al.  Lower limit on the Higgs mass in the standard model: An Update , 1994 .

[73]  J. Espinosa,et al.  Improved Higgs mass stability bound in the standard model and implications for supersymmetry , 1994, hep-ph/9409458.

[74]  A. Pilaftsis,et al.  Flavour-violating charged lepton decays in seesaw-type models , 1994, hep-ph/9403398.

[75]  M. Sher Precise Vacuum Stability Bound in the Standard Model (addendum) , 1993, hep-ph/9307342.

[76]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[77]  A. Pilaftsis Radiatively induced neutrino masses and large Higgs-neutrino couplings in the Standard Model with Majorana fields , 1992, hep-ph/9901206.

[78]  G. Altarelli,et al.  Toward a model-independent analysis of electroweak data , 1992 .

[79]  Arnold,et al.  Instability of hot electroweak theory: Bounds on mH and mt. , 1991, Physical review. D, Particles and fields.

[80]  L. Randall,et al.  Radiative corrections to electroweak parameters in technicolor theories , 1991 .

[81]  G. Altarelli,et al.  Vacuum polarization effects of new physics on electroweak processes , 1991 .

[82]  J. Terning,et al.  Large corrections to electroweak parameters in technicolor theories , 1990 .

[83]  Takeuchi,et al.  New constraint on a strongly interacting Higgs sector. , 1990, Physical review letters.

[84]  M. Sher,et al.  Probing vacuum stability bounds at the fermilab collider , 1989 .

[85]  M. Sher Electroweak Higgs Potentials and Vacuum Stability , 1989 .

[86]  Arnold,et al.  Can the electroweak vacuum be unstable? , 1989, Physical review. D, Particles and fields.

[87]  J. Valle,et al.  Fast decaying neutrinos and observable flavour violation in a new class of Majoron models , 1989 .

[88]  J. Valle,et al.  Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.

[89]  M. Lindner Implications of triviality for the standard model , 1986 .

[90]  J. Valle,et al.  Neutrino decay and spontaneous violation of lepton number , 1982 .

[91]  R. Shrock New Tests For, and Bounds On, Neutrino Masses and Lepton Mixing , 1980 .

[92]  S. Weinberg Varieties of Baryon and Lepton Nonconservation , 1980 .

[93]  S. Coleman,et al.  Gravitational Effects on and of Vacuum Decay , 1980 .

[94]  P. Longe,et al.  Intensity of Plasmon Satellites in Ultrasoft-X-Ray Photoemission Spectra , 1980 .

[95]  C. Itzykson,et al.  Recent Developments in Gauge Theories. Proceedings, Nato Advanced Study Institute, Cargese, France, August 26 - September 8, 1979 , 1980 .

[96]  M. Gell-Mann,et al.  Complex spinors and unified theories , 2013, 1306.4669.

[97]  T. Yanagida,et al.  Horizontal Symmetry and Masses of Neutrinos , 1980 .

[98]  G. Parisi,et al.  Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories , 1979 .

[99]  P. Q. Hưng Vacuum Instability and New Constraints on Fermion Masses , 1979 .

[100]  S. Wolfram,et al.  Bounds on particle masses in the Weinberg-Salam model , 1979 .

[101]  G. Parisi,et al.  Bounds on the number and masses of quarks and leptons , 1978 .

[102]  N. Krasnikov Restriction of the Fermion Mass in Gauge Theories of Weak and Electromagnetic Interactions , 1978 .

[103]  S. Coleman The Fate of the False Vacuum. 1. Semiclassical Theory , 1977 .

[104]  P. Minkowski μ→eγ at a rate of one out of 109 muon decays? , 1977 .

[105]  S. Petcov,et al.  Lepton mixing, μ --> e + γ decay and neutrino oscillations , 1977 .