Tree-Based Parallel Algorithm Design

Abstract. In this paper a systematic method for the design of efficient parallel algorithms for the dynamic evaluation of computation trees and/or expressions is presented. This method involves the use of uniform closure properties of certain classes of unary functions. Using this method, optimal parallel algorithms are given for many computation tree problems which are important in parallel algebraic and numerical computation, and parallel code generation on exclusive read and exclusive write parallel random access machines. Our algorithmic result is complemented by a P-complete tree problem.

[1]  Jeffrey D. Ullman,et al.  The Generation of Optimal Code for Arithmetic Expressions , 1970, JACM.

[2]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[3]  Gary L. Miller,et al.  Dynamic parallel complexity of computational circuits , 1987, STOC '87.

[4]  David G. Kirkpatrick,et al.  A Simple Parallel Tree Contraction Algorithm , 1989, J. Algorithms.

[5]  Gary L. Miller,et al.  A Simple Randomized Parallel Algorithm for List-Ranking , 1990, Inf. Process. Lett..

[6]  John Staples,et al.  The Maximum Flow Problem is Log Space Complete for P , 1982, Theor. Comput. Sci..

[7]  Leslie G. Valiant,et al.  Universal schemes for parallel communication , 1981, STOC '81.

[8]  Gary L. Miller,et al.  List ranking and parallel tree contraction , 1993 .

[9]  Wojciech Rytter,et al.  An Optimal Parallel Algorithm for Dynamic Expression Evaluation and Its Applications , 1986, FSTTCS.

[10]  Richard Cole,et al.  Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking , 2018, Inf. Control..

[11]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[12]  S. Teng,et al.  Optimal Tree Contraction in the EREW Model , 1988 .

[13]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[14]  Gary L. Miller,et al.  Efficient Parallel Evaluation of Straight-Line Code and Arithmetic Circuits , 1988, SIAM J. Comput..

[15]  P BrentRichard The Parallel Evaluation of General Arithmetic Expressions , 1974 .

[16]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[17]  Phillip B. Gibbons,et al.  Subtree Isomorphism is in Random NC , 1988 .

[18]  Shietung Peng,et al.  Parallel Tree Techniques and Code Optimization , 1986, Aegean Workshop on Computing.

[19]  Philip N. Klein,et al.  An efficient parallel algorithm for planarity , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[20]  Xin He,et al.  Binary Tree Algebraic Computation and Parallel Algorithms for Simple Graphs , 1988, J. Algorithms.

[21]  John C. Mitchell,et al.  On the Sequential Nature of Unification , 1984, J. Log. Program..

[22]  Richard Cole,et al.  Approximate and exact parallel scheduling with applications to list, tree and graph problems , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[23]  Daniel Gajski,et al.  Essential Issues in Multiprocessor Systems , 1985, Computer.

[24]  Bin Wang,et al.  Parallel Algorithms for Message Decomposition , 1987, J. Parallel Distributed Comput..

[25]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[26]  Arthur L. Delcher,et al.  Optimal Parallel Evaluation of Tree-Structured Computations by Raking , 1988, AWOC.

[27]  Gary L. Miller,et al.  Parallel tree contraction and its application , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).