Transverse nonlinear instability of solitary waves for some Hamiltonian PDE's

We present a general result of transverse nonlinear instability of 1-d solitary waves for Hamiltonian PDE's for both periodic or localized transverse perturbations. Our main structural assumption is that the linear part of the 1d model and the transverse perturbation "have the same sign". Our result applies to the generalized KP-I equation, the Nonlinear Schr\"odinger equation, the generalized Boussinesq system and the Zakharov-Kuznetsov equation and we hope that it may be useful in other contexts.

[1]  J. Alexander,et al.  A topological invariant arising in the stability analysis of travelling waves. , 1990 .

[2]  P. Souganidis,et al.  Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Yongqian Han,et al.  Remarks on the generalized Kadomtsev-Petviashvili equations and two-dimensional Benjamin-Ono equations , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Rafael José Iório,et al.  On equations of KP-type , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Kevin Zumbrun,et al.  Large Viscous Boundary Layers For Noncharacteristic Nonlinear Hyperbolic Problems , 2005 .

[6]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[7]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[8]  Todd Kapitula,et al.  Stability of bright solitary-wave solutions to perturbed nonlinear Schro , 1998 .

[9]  Jean-Claude Saut,et al.  Global well-posedness for the KP-BBM equations , 2004 .

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  Michael I. Weinstein,et al.  Eigenvalues, and instabilities of solitary waves , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[12]  Yue Liu,et al.  Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions , 2002 .

[13]  J. Bona,et al.  Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation , 1988 .

[14]  Kevin Zumbrun,et al.  The gap lemma and geometric criteria for instability of viscous shock profiles , 1998 .

[15]  Jean-Claude Saut,et al.  Global Well-Posedness for the KP-I Equation on the Background of a Non-Localized Solution , 2007 .

[16]  Youcef Mammeri,et al.  Comparaison entre modèles d'ondes de surface en dimension 2 , 2007 .

[17]  C. Kenig,et al.  Chapter 9. Local and Global Wellposedness of Periodic KP-I Equations , 2009 .

[18]  Luc Molinet,et al.  On the Asymptotic Behavior of Solutions to the (Generalized) Kadomtsev–Petviashvili–Burgers Equations☆ , 1999 .

[19]  H. Kreiss,et al.  Stability of systems of viscous conservation laws , 1998 .

[20]  N. Tzvetkov,et al.  Transverse nonlinear instability for two-dimensional dispersive models , 2006, math/0612494.

[21]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[22]  Emmanuel Grenier,et al.  On the nonlinear instability of Euler and Prandtl equations , 2000 .

[23]  Thomas J. Bridges Universal geometric condition for the transverse instability of solitary waves , 2000, Physical review letters.

[24]  Robert L. Pego,et al.  Travelling waves of the KP equations with transverse modulations , 1999 .

[25]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[26]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[27]  R. Johnson A Two-dimensional Boussinesq equation for water waves and some of its solutions , 1996, Journal of Fluid Mechanics.

[28]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[29]  M. Haragus,et al.  Transverse instability of gravity-capillary line solitary water waves , 2001 .