Si nanocluster sensitization of Er-doped silica for optical amplet using top-pumping visible LEDs

A review is presented of Si nanocluster sensitization of Er-doped silica for planar optical amplifiers using top-pumping 470-nm light-emitting diodes (LEDs). The motivation and basic physical principles underlying the nanocluster sensitization are first reviewed. The material structures necessary for optimum performances are presented, with emphasis on the need for nanoscale engineering of the composition and structure. Evidence of optical gain using commercial GaN-visible LEDs are presented, and the simulation results of possible device performances described. Finally, some possible future directions for research are discussed

[1]  C. R. Giles,et al.  Modeling erbium-doped fiber amplifiers , 1991 .

[2]  H. Bardeleben,et al.  Direct excitation spectroscopy of Er centers in porous silicon , 1997 .

[3]  J. Shin,et al.  Controlling Er–Tm interaction in Er and Tm codoped silicon-rich silicon oxide using nanometer-scale spatial separation for efficient, broadband infrared luminescence , 2004 .

[4]  Pieter G. Kik,et al.  Concentration quenching in erbium implanted alkali silicate glasses , 1996 .

[5]  Peixiong Shi,et al.  Precipitate coarsening and self organization in erbium-doped silica , 1999 .

[6]  M. Salvi,et al.  Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials , 1989 .

[7]  Zheng,et al.  Electroluminescence of erbium-doped silicon. , 1996, Physical review. B, Condensed matter.

[8]  P. Pellegrino,et al.  Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides , 2005 .

[9]  P. Pellegrino,et al.  Site of Er ions in silica layers codoped with Si nanoclusters and Er , 2006 .

[10]  Sebania Libertino,et al.  The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon , 1995 .

[11]  Pieter G. Kik,et al.  Strong exciton-erbium coupling in Si nanocrystal-doped SiO2 , 2000 .

[12]  M. Brongersma,et al.  Cavity $Q$ Measurements of Silica Microspheres with Nanocluster Silicon Active Layer , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Harry A. Atwater,et al.  Defect‐related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2 , 1996 .

[14]  L. Kimerling,et al.  Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model , 2000 .

[15]  J. Shin,et al.  Er–carrier interaction and its effects on the Er3+ luminescence of erbium-doped Si/SiO2 superlattices , 2000 .

[16]  Performance analysis of nanocluster-Si sensitized Er-doped waveguide amplifier using top-pumped 470nm LED. , 2005, Optics express.

[17]  Fabio Iacona,et al.  Correlation between luminescence and structural properties of Si nanocrystals , 2000 .

[18]  Langer,et al.  Auger effect in the Mn2+ luminescence of CdF2:(Mn,Y) crystals. , 1989, Physical review. B, Condensed matter.

[19]  Jurgen Michel,et al.  Impurity enhancement of the 1.54‐μm Er3+ luminescence in silicon , 1991 .

[20]  J. Shin,et al.  1.54 μm Er3+ photoluminescent and waveguiding properties of erbium-doped silicon-rich silicon oxide , 2000 .

[21]  Levi,et al.  Excitation mechanisms and optical properties of rare-earth ions in semiconductors. , 1991, Physical review letters.

[22]  Minoru Fujii,et al.  Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er , 2004 .

[23]  Dae Won Moon,et al.  The characteristic carrier–Er interaction distance in Er-doped a-Si/SiO2 superlattices formed by ion sputtering , 2003 .

[24]  G. N. van den Hoven,et al.  Erbium in crystal silicon: Optical activation, excitation, and concentration limits , 1995 .

[25]  Jung H. Shin,et al.  Optical Gain at 1 . 5 m in Nanocrystal Si-Sensitized Er-Doped Silica Waveguide Using Top-Pumping 470 nm LEDs , 2004 .

[26]  P. Andry,et al.  Growth of Er‐doped silicon using metalorganics by plasma‐enhanced chemical vapor deposition , 1996 .

[27]  F. Auzel,et al.  Materials and devices using double-pumped-phosphors with energy transfer , 1973 .

[28]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[29]  Namkyoo Park,et al.  Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier , 2002 .

[30]  P. Pellegrino,et al.  Low-loss rib waveguides containing Si nanocrystals embedded in SiO2 , 2005 .

[31]  Minoru Fujii,et al.  Resonant excitation of Er3+ by the energy transfer from Si nanocrystals , 2001 .

[32]  J. Shin,et al.  1.54 μm Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices , 1999 .

[33]  M. Zacharias,et al.  Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces , 2000 .

[34]  S. G. Bishop,et al.  Photoluminescence excitation spectroscopy of erbium-doped silicon-rich silicon oxide , 2000 .

[35]  A. Axmann,et al.  1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon , 1983 .

[36]  Alberto Carnera,et al.  Room‐temperature electroluminescence from Er‐doped crystalline Si , 1994 .

[37]  Pieter G. Kik,et al.  TOWARDS AN ER-DOPED SI NANOCRYSTAL SENSITIZED WAVEGUIDE LASER - THE THIN LINE BETWEEN GAIN AND LOSS , 2003 .

[38]  G. Franzò,et al.  The excitation mechanism of rare-earth ions in silicon nanocrystals , 1999 .

[39]  J. Poate,et al.  Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode , 1994 .

[40]  R. Saito,et al.  Suppression of Auger deexcitation and temperature quenching of the Er-related 1.54 μm emission with an ultrathin oxide interlayer in an Er/SiO2/Si structure , 2003 .

[41]  F. Priolo,et al.  Revealing the sequential nature of the Si-nanocluster-Er interaction by variable pulse duration excitation , 2005 .

[42]  Se-Young Seo,et al.  Composition dependence of room temperature 1.54 μm Er3+ luminescence from erbium-doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition , 1998 .

[43]  S. G. Bishop,et al.  Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass , 1998 .

[44]  Domenico Pacifici,et al.  Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification , 2003 .

[45]  J.H. Shin,et al.  Optical gain at 1.5 /spl mu/m in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs , 2004, Journal of Lightwave Technology.

[46]  N. Daldosso,et al.  Er/sup 3+/ absorption cross section in Si-nanocrystal waveguides in SiO/sub 2/ , 2005 .

[47]  J. Shin,et al.  The Nd-nanocluster coupling strength and its effect in excitation/de-excitation of Nd3+ luminescence in Nd-doped silicon-rich silicon oxide , 2003 .

[48]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[49]  F. Priolo,et al.  Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films , 2004 .

[50]  Anthony J. Kenyon,et al.  OPTICAL-PROPERTIES OF PECVD ERBIUM-DOPED SILICON-RICH SILICA - EVIDENCE FOR ENERGY-TRANSFER BETWEEN SILICON MICROCLUSTERS AND ERBIUM IONS , 1994 .

[51]  Carrier-induced Er3+ luminescence quenching of erbium-doped silicon-rich silicon oxide , 1999 .

[52]  L. Nesbit,et al.  Annealing characteristics of Si‐rich SiO2 films , 1985 .

[53]  Pieter G. Kik,et al.  Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2 , 2002 .

[54]  Toshiaki Ikoma,et al.  Electrochemical Er doping of porous silicon and its room‐temperature luminescence at ∼1.54 μm , 1994 .

[55]  L. Kimerling,et al.  The mechanisms of electronic excitation of rare earth impurities in semiconductors , 1993 .