A SIMPLE LIKELIHOOD METHOD FOR QUASAR TARGET SELECTION

We present a new method for quasar target selection using photometric fluxes and a Bayesian probabilistic approach. For our purposes, we target quasars using Sloan Digital Sky Survey (SDSS) photometry to a magnitude limit of g = 22. The efficiency and completeness of this technique are measured using the Baryon Oscillation Spectroscopic Survey (BOSS) data taken in 2010. This technique was used for the uniformly selected (CORE) sample of targets in BOSS year-one spectroscopy to be realized in the ninth SDSS data release. When targeting at a density of 40 objects?deg?2 (the BOSS quasar targeting density), the efficiency of this technique in recovering z > 2.2 quasars is 40%. The completeness compared to all quasars identified in BOSS data is 65%. This paper also describes possible extensions and improvements for this technique.

[1]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[2]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[3]  B. Yanny,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006 .

[4]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[5]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[6]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[7]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[8]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[9]  J. A. Smith,et al.  SDSS data management and photometric quality assessment , 2004 .

[10]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release , 2007, 0704.0806.

[11]  S. Djorgovski,et al.  BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z ∼ 3–4 , 2009, 0908.3907.

[12]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[13]  A. C. Becker,et al.  QUASAR SELECTION BASED ON PHOTOMETRIC VARIABILITY , 2010, 1009.2081.

[14]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[15]  Patrick Petitjean,et al.  Artificial neural networks for quasar selection and photometric redshift determination , 2010 .

[16]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[17]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[18]  Alexander G. Gray,et al.  EIGHT-DIMENSIONAL MID-INFRARED/OPTICAL BAYESIAN QUASAR SELECTION , 2008, 0810.3567.

[19]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[20]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[21]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[22]  Allan Sandage,et al.  The Existence of a Major New Constituent of the Universe: the Quasistellar Galaxies. , 1965 .

[23]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[24]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[25]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[26]  G. T. Richards,et al.  A Spectroscopic Survey of Faint Quasars in the SDSS Deep Stripe. I. Preliminary Results from the Co-added Catalog* , 2006 .

[27]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[28]  Xiaohui Fan Simulation of Stellar Objects in SDSS Color Space , 1999 .

[29]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[30]  John Skilling,et al.  Data Analysis-A Bayesian Tutorial: Second Edition , 2006 .

[31]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[32]  A. Myers,et al.  THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSO QUASAR TARGETING CATALOG , 2010, 1011.6392.

[33]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[34]  B. A. Weaver,et al.  Variability selected high-redshift quasars on SDSS Stripe 82 , 2010, 1012.2391.

[35]  Robert J. Brunner,et al.  The 2dF-SDSS LRG and QSO Survey: the spectroscopic QSO catalogue , 2008, 0810.4955.

[36]  Alexander G. Gray,et al.  EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1, 000, 000 QUASARS FROM DATA RELEASE 6 , 2004, The Astrophysical Journal Supplement Series.

[37]  Gregory Dobler,et al.  SELECTING QUASARS BY THEIR INTRINSIC VARIABILITY , 2010, 1002.2642.