High-frequency and intrinsically stretchable polymer diodes

[1]  J. B. Tok,et al.  Monolithic optical microlithography of high-density elastic circuits , 2021, Science.

[2]  Yerun Gao,et al.  Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method , 2021, Advanced Functional Materials.

[3]  Bumjoon J. Kim,et al.  Intrinsically Stretchable Organic Solar Cells with Efficiencies of over 11% , 2021 .

[4]  Jong Won Chung,et al.  Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system , 2021, Science Advances.

[5]  Jin-Woo Park,et al.  Intrinsically stretchable organic light-emitting diodes , 2021, Science Advances.

[6]  Doris A Taylor,et al.  An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity , 2020, Nature Electronics.

[7]  Xiaodong Chen,et al.  A Carbon Flower Based Flexible Pressure Sensor Made from Large‐Area Coating , 2020, Advanced Materials Interfaces.

[8]  V. Mattoli,et al.  A 13.56 MHz Rectifier Based on Fully Inkjet Printed Organic Diodes , 2020, Advanced materials.

[9]  Joachim N. Burghartz,et al.  Flexible low-voltage high-frequency organic thin-film transistors , 2020, Science Advances.

[10]  Thuc‐Quyen Nguyen,et al.  A High‐Performance Solution‐Processed Organic Photodetector for Near‐Infrared Sensing , 2019, Advanced materials.

[11]  Bo Yuan,et al.  Printed Conformable Liquid Metal e‐Skin‐Enabled Spatiotemporally Controlled Bioelectromagnetics for Wireless Multisite Tumor Therapy , 2019, Advanced Functional Materials.

[12]  Sihong Wang,et al.  A wireless body area sensor network based on stretchable passive tags , 2019, Nature Electronics.

[13]  Zhenan Bao,et al.  High‐Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology , 2019, Advanced Electronic Materials.

[14]  Takao Someya,et al.  Materials and structural designs of stretchable conductors. , 2019, Chemical Society reviews.

[15]  Cunjiang Yu,et al.  Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors , 2019, Science Advances.

[16]  Jeonghyun Kim,et al.  Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat , 2019, Science Advances.

[17]  Sheng Xu,et al.  Materials and Structures toward Soft Electronics , 2018, Advanced materials.

[18]  Sheng Xu,et al.  Three-dimensional integrated stretchable electronics , 2018, Nature Electronics.

[19]  Wen‐Chang Chen,et al.  Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering. , 2018, ACS applied materials & interfaces.

[20]  Cunjiang Yu,et al.  Biaxially Stretchable Fully Elastic Transistors Based on Rubbery Semiconductor Nanocomposites , 2018 .

[21]  Zhenan Bao,et al.  Skin-Inspired Electronics: An Emerging Paradigm. , 2018, Accounts of chemical research.

[22]  Boris Murmann,et al.  Skin electronics from scalable fabrication of an intrinsically stretchable transistor array , 2018, Nature.

[23]  Toshihiro Okamoto,et al.  Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation , 2018, Science Advances.

[24]  Q. Pei,et al.  A Solid-State Intrinsically Stretchable Polymer Solar Cell. , 2017, ACS applied materials & interfaces.

[25]  H. Sirringhaus,et al.  Organic Diode Rectifiers Based on a High‐Performance Conjugated Polymer for a Near‐Field Energy‐Harvesting Circuit , 2017, Advanced materials.

[26]  Cunjiang Yu,et al.  Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors , 2017, Science Advances.

[27]  Sihong Wang,et al.  Ultratransparent and stretchable graphene electrodes , 2017, Science Advances.

[28]  Takao Someya,et al.  Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. , 2017, Nature nanotechnology.

[29]  Jong Won Chung,et al.  A highly stretchable, transparent, and conductive polymer , 2017, Science Advances.

[30]  Q. Pei,et al.  Elastomeric Light Emitting Polymer Enhanced by Interpenetrating Networks. , 2016, ACS applied materials & interfaces.

[31]  T. Someya,et al.  A Mechanically Durable and Flexible Organic Rectifying Diode with a Polyethylenimine Ethoxylated Cathode , 2016 .

[32]  D. Bradley,et al.  1 GHz Pentacene Diode Rectifiers Enabled by Controlled Film Deposition on SAM‐Treated Au Anodes , 2016 .

[33]  Sam Emaminejad,et al.  Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis , 2016, Nature.

[34]  Dezhi Yang,et al.  Extremely Low Dark Current, High Responsivity, All‐Polymer Photodetectors with Spectral Response from 300 nm to 1000 nm , 2015 .

[35]  Bo Liedberg,et al.  Thickness‐Gradient Films for High Gauge Factor Stretchable Strain Sensors , 2015, Advanced materials.

[36]  Daoben Zhu,et al.  Thiophene-Diketopyrrolopyrrole-Based Quinoidal Small Molecules as Solution-Processable and Air-Stable Organic Semiconductors: Tuning of the Length and Branching Position of the Alkyl Side Chain toward a High-Performance n-Channel Organic Field-Effect Transistor. , 2015, ACS applied materials & interfaces.

[37]  Donald Lupo,et al.  Electrical and thermal analysis of frequency dependent filamentary switching in printed rectifying diodes , 2015 .

[38]  Silvestro Micera,et al.  Electronic dura mater for long-term multimodal neural interfaces , 2015, Science.

[39]  G. Buzsáki,et al.  NeuroGrid: recording action potentials from the surface of the brain , 2014, Nature Neuroscience.

[40]  Karlheinz Bock,et al.  Air-stable, high current density, solution-processable, amorphous organic rectifying diodes (ORDs) for low-cost fabrication of flexible passive low frequency RFID tags , 2014, Microelectron. Reliab..

[41]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[42]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[43]  Z. Bao,et al.  Flexible Wireless Temperature Sensors Based on Ni Microparticle‐Filled Binary Polymer Composites , 2013, Advanced materials.

[44]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[45]  Jun Kawahara,et al.  Improving the color switch contrast in PEDOT:PSS-based electrochromic displays , 2012 .

[46]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[47]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[48]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[49]  Dongha Tahk,et al.  Elastic Moduli of Organic Electronic Materials by the Buckling Method , 2009 .

[50]  Yutaka Ito,et al.  Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. , 2009, Journal of the American Chemical Society.

[51]  Kris Myny,et al.  Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags , 2006 .

[52]  Kris Myny,et al.  50 MHz rectifier based on an organic diode , 2005, Nature materials.

[53]  Jeffrey James,et al.  An emerging paradigm , 2004 .