Valley Zeeman effect in elementary optical excitations of monolayer WSe2

Charge carriers in transition metal dichalcogenides have an extra degree of freedom known as valley pseudospin, which is associated with the shape of the energy bands. Experiments show that this pseudospin can be manipulated using magnetic fields.

[1]  Xu Cui,et al.  Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. , 2014, Physical Review Letters.

[2]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[3]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[4]  X. Marie,et al.  Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides , 2014, 1403.0108.

[5]  Farhan Rana,et al.  Absorption of light by excitons and trions in monolayers of metal dichalcogenide Mo S 2 : Experiments and theory , 2014, 1402.0263.

[6]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[7]  Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals , 2005, cond-mat/0512142.

[8]  Aaron M. Jones,et al.  Supplementary Materials Magnetic Control of Valley Pseudospin in Monolayer WSe2 , 2014, 1407.2645.

[9]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[10]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[11]  Xiaodong Xu,et al.  Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides , 2014, Nature Communications.

[12]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[13]  Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands , 1995, cond-mat/9511014.

[14]  Shengyuan A. Yang,et al.  Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides , 2013, 1309.3814.

[15]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[16]  Gil Refael,et al.  Topological polaritons from quantum wells in photonic waveguides or microcavities , 2014 .

[17]  M. Z. Maialle,et al.  Exciton spin dynamics in quantum wells. , 1993, Physical review. B, Condensed matter.

[18]  Jerry B. Marion,et al.  Experiments and theory , 1963 .

[19]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[20]  S. Koch,et al.  Optically bright p-excitons indicating strong Coulomb coupling in transition-metal dichalcogenides , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Steven G. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[22]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[23]  R. Asgari,et al.  Effective lattice Hamiltonian for monolayer MoS 2 : Tailoring electronic structure with perpendicular electric and magnetic fields , 2013, 1302.5901.

[24]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[25]  Yugui Yao,et al.  Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides , 2013, 1305.6089.

[26]  G. Burkard,et al.  Monolayer MoS 2 : Trigonal warping, the Γ valley, and spin-orbit coupling effects , 2013, 1304.4084.

[27]  Orbital magnetization in periodic insulators. , 2005, Physical review letters.

[28]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[29]  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[30]  G. Wang,et al.  Giant enhancement of the optical second-harmonic emission of WSe(2) monolayers by laser excitation at exciton resonances. , 2015, Physical review letters.

[31]  K. Ko'smider,et al.  Large spin splitting in the conduction band of transition metal dichalcogenide monolayers , 2013, 1311.0049.

[32]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[33]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[34]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[35]  Tao Yu,et al.  Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS 2 , 2013, 1401.0047.

[36]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[37]  D. Ralph,et al.  Valley degeneracy breaking by magnetic field in monolayer MoSe 2 , 2014 .

[38]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[39]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[40]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Xiaodong Xu,et al.  Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer MoS2 quantum Hall systems , 2014 .

[42]  Molecular sensing: a universal receptor. , 2013, Nature nanotechnology.

[43]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[44]  M. Goerbig,et al.  Spin- and valley-dependent magneto-optical properties of MoS 2 , 2013, 1307.2884.