Overcoming deficiencies of the rule-based medical expert system.

One of the current deficiencies of the rule-based expert system is its static nature. As these systems are applied to medicine, this shortcoming becomes accentuated by: the rapid speed at which new knowledge is generated, the regional differences associated with the expression of many diseases, and the rate at which patient demographics and disease incidence change over time. This research presents a solution to the static nature of the rule-based expert system by proposing a hybrid system. This system consists of an expert system and a statistical analysis system linked to a patient database. The additional feature of a rule base manager which initiates automatic database analysis to refresh the statistical correlation of each rule ensures a dynamic, current, statistically accurate rule base. The philosophical differences between data and knowledge are also addressed as they apply to this type of hybrid system. The system is then used to generate four rule bases from different knowledge sources. These rule bases are then compared.