Conformal field theories generated by Chern insulators under decoherence or measurement

We demonstrate that the fidelity between a pure state trivial insulator and the mixed state density matrix of a Chern insulator under decoherence can be mapped to a variety of two-dimensional conformal field theories (CFT); more specifically, the quantity $\mathcal{Z} = \text{tr}\{ \hat{\rho}^D_c \hat{\rho}_\Omega \}$ is mapped to the partition function of the desired CFT, where $\hat{\rho}^D_c$ and $\hat{\rho}_\Omega$ are respectively the density matrices of the decohered Chern insulator and a pure state trivial insulator. For a pure state Chern insulator with Chern number $2N$, the fidelity $\mathcal{Z}$ is mapped to the partition function of the $\text{U}(2N)_1$ CFT; under weak decoherence, the Chern insulator density matrix can experience certain instability, and the"partition function"$\mathcal{Z}$ can flow to other interacting CFTs with smaller central charges. The R\'{e}nyi relative entropy $\mathcal{F} = - \log \text{tr}\{ \hat{\rho}^D_c \hat{\rho}_\Omega \}$ is mapped to the free energy of the CFT, and we demonstrate that the central charge of the CFT can be extracted from the finite size scaling of $\mathcal{F}$, analogous to the well-known finite size scaling of $2d$ CFT.

[1]  B. Muralidharan,et al.  Are Symmetry Protected Topological Phases Immune to Dephasing? , 2023, 2305.11149.

[2]  B. Neyenhuis,et al.  Topological Order from Measurements and Feed-Forward on a Trapped Ion Quantum Computer , 2023, 2302.01917.

[3]  Chao-Ming Jian,et al.  Quantum Criticality Under Decoherence or Weak Measurement , 2023, PRX Quantum.

[4]  Yang Qi,et al.  Strange Correlation Function for Average Symmetry-Protected Topological Phases , 2022, 2210.17485.

[5]  D. Lu,et al.  Fermi surface symmetric mass generation , 2022, Physical Review B.

[6]  Yi-Zhuang You,et al.  Symmetry protected topological phases under decoherence , 2022, 2210.16323.

[7]  A. Vishwanath,et al.  The Shortest Route to Non-Abelian Topological Order on a Quantum Processor , 2022, 2209.03964.

[8]  M. Fisher,et al.  Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising model to gauge theory, and beyond , 2022, 2208.11699.

[9]  S. Trebst,et al.  Nishimori's Cat: Stable Long-Range Entanglement from Finite-Depth Unitaries and Weak Measurements. , 2022, Physical review letters.

[10]  M. Fisher,et al.  Random Quantum Circuits , 2022, Annual Review of Condensed Matter Physics.

[11]  E. Altman,et al.  Measurements Conspire Nonlocally to Restructure Critical Quantum States , 2022, Physical Review X.

[12]  S. Vijay,et al.  Monitored quantum dynamics and the Kitaev spin liquid , 2022, Physical Review B.

[13]  Yi-Zhuang You,et al.  Symmetric Mass Generation , 2022, Symmetry.

[14]  A. Hasenfratz Emergent strongly coupled ultraviolet fixed point in four dimensions with eight Kähler-Dirac fermions , 2022, Physical Review D.

[15]  Jin Ming Koh,et al.  Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout , 2022, Nature Physics.

[16]  Yi-Zhuang You,et al.  Symmetric Mass Generation in the 1+1 Dimensional Chiral Fermion 3-4-5-0 Model. , 2022, Physical review letters.

[17]  Amber T. Krummel,et al.  Breaking Barriers in Ultrafast Spectroscopy and Imaging Using 100 kHz Amplified Yb-Laser Systems. , 2023, Accounts of chemical research.

[18]  N. Schuch,et al.  Symmetry Protected Topological Order in Open Quantum Systems , 2021, Quantum.

[19]  A. Vishwanath,et al.  Long-Range Entanglement from Measuring Symmetry-Protected Topological Phases , 2021, Physical Review X.

[20]  A. Vishwanath,et al.  Pivot Hamiltonians as generators of symmetry and entanglement , 2021, SciPost Physics.

[21]  D. Huse,et al.  Measurement-induced quantum phases realized in a trapped-ion quantum computer , 2021, Nature Physics.

[22]  D. Tong Comments on symmetric mass generation in 2d and 4d , 2021, Journal of High Energy Physics.

[23]  Shlomo S. Razamat,et al.  Gapped Chiral Fermions , 2020, 2009.05037.

[24]  D. Huse,et al.  Entanglement Phase Transitions in Measurement-Only Dynamics , 2020, Physical Review X.

[25]  T. Hsieh,et al.  Measurement-protected quantum phases , 2020, Physical Review Research.

[26]  M. Barkeshli,et al.  Measurement-induced topological entanglement transitions in symmetric random quantum circuits , 2020, Nature Physics.

[27]  X. Qi,et al.  Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition. , 2019, Physical review letters.

[28]  D. Huse,et al.  Scalable Probes of Measurement-Induced Criticality. , 2019, Physical review letters.

[29]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[30]  A. Ludwig,et al.  Measurement-induced criticality in random quantum circuits , 2019, Physical Review B.

[31]  Soonwon Choi,et al.  Theory of the phase transition in random unitary circuits with measurements , 2019, Physical Review B.

[32]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[33]  D. Huse,et al.  Dynamical Purification Phase Transition Induced by Quantum Measurements , 2019, Physical Review X.

[34]  F. Verstraete,et al.  Galois Conjugated Tensor Fusion Categories and Nonunitary Conformal Field Theory. , 2019, Physical review letters.

[35]  Matthew P. A. Fisher,et al.  Quantum Zeno effect and the many-body entanglement transition , 2018, Physical Review B.

[36]  Brian Skinner,et al.  Measurement-Induced Phase Transitions in the Dynamics of Entanglement , 2018, Physical Review X.

[37]  A. Vishwanath,et al.  From bosonic topological transition to symmetric fermion mass generation , 2017, 1711.00863.

[38]  A. Vishwanath,et al.  Symmetric Fermion Mass Generation as Deconfined Quantum Criticality , 2017, 1705.09313.

[39]  F. Grusdt Topological order of mixed states in correlated quantum many-body systems , 2016, 1609.02432.

[40]  S. Chandrasekharan,et al.  Origin of fermion masses without spontaneous symmetry breaking , 2015, 1511.09071.

[41]  S. Catterall Fermion mass without symmetry breaking , 2015, 1510.04153.

[42]  Thomas Scaffidi,et al.  Wave functions of symmetry-protected topological phases from conformal field theories , 2015, 1505.02775.

[43]  Cenke Xu,et al.  Exotic quantum phase transitions of strongly interacting topological insulators , 2015 .

[44]  S. Chandrasekharan Fermion Bags and A New Origin for a Fermion Mass , 2014, 1412.3532.

[45]  S. Chandrasekharan,et al.  Massive fermions without fermion bilinear condensates , 2014, 1410.6474.

[46]  D. Arovas,et al.  Topological indices for open and thermal systems via Uhlmann's phase. , 2014, Physical review letters.

[47]  Cenke Xu,et al.  Wave function and strange correlator of short-range entangled states. , 2013, Physical review letters.

[48]  Ángel Rivas Vargas,et al.  Density-matrix Chern insulators: finite-temperature generalization of topological insulators , 2013 .

[49]  Á. Rivas,et al.  Uhlmann phase as a topological measure for one-dimensional fermion systems. , 2013, Physical review letters.

[50]  X. Wen,et al.  Nonperturbative regularization of ( 1+1 )-dimensional anomaly-free chiral fermions and bosons: On the equivalence of anomaly matching conditions and boundary gapping rules , 2013, Physical Review B.

[51]  Michael Levin,et al.  Effect of interactions on two-dimensional fermionic symmetry-protected topological phases with Z 2 symmetry , 2013, 1304.4569.

[52]  Michael Levin,et al.  Classification and analysis of two-dimensional Abelian fractional topological insulators , 2012, 1205.1244.

[53]  X. Qi A new class of (2 + 1)-dimensional topological superconductors with topological classification , 2012, 1202.3983.

[54]  R. Shankar,et al.  Equality of bulk wave functions and edge correlations in some topological superconductors: a spacetime derivation. , 2011, Physical review letters.

[55]  Umar Mohideen,et al.  Advances in the Casimir Effect , 2009 .

[56]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[57]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[58]  I. Affleck Exact critical exponents for quantum spin chains, non-linear σ-models at θ=π and the quantum hall effect , 1986 .

[59]  J. Cardy,et al.  Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. , 1986, Physical review letters.

[60]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[61]  I. Affleck,et al.  Universal term in the free energy at a critical point and the conformal anomaly. , 1986, Physical review letters.

[62]  C. Itzykson,et al.  Conformal Invariance , 1987 .