Constraining the atmosphere of GJ 1214b using an optimal estimation technique

We explore cloudy, extended H2-He atmosphere scenarios for the warm super-Earth GJ 1214b using an optimal estimation retrieval technique. This planet, orbiting an M4.5 star only 13 pc from the Earth, is of particular interest because it lies between the Earth and Neptune in size and may be a member of a new class of planet that is neither terrestrial nor gas giant. Its relatively flat transmission spectrum has so far made atmospheric characterization difficult. The Non-linear optimal Estimator for MultivariateE spectral analySIS (NEMESIS) algorithm is used to explore the degenerate model parameter space for a cloudy, H2-He-dominated atmosphere scenario. Optimal estimation is a data-led approach that allows solutions beyond the range permitted by ab initio equilibrium model atmosphere calculations, and as such prevents restriction from prior expectations. We show that optimal estimation retrieval is a powerful tool for this kind of study, and present an exploration of the degenerate atmospheric scenarios for GJ 1214b. Whilst we find a family of solutions that provide a very good fit to the data, the quality and coverage of these data are insufficient for us to more precisely determine the abundances of cloud and trace gases given an H2-He atmosphere, and we also cannot rule out the possibility of a high molecular weight atmosphere. Future ground- and space-based observations will provide the opportunity to confirm or rule out an extended H2-He atmosphere, but more precise constraints will be limited by intrinsic degeneracies in the retrieval problem, such as variations in cloud top pressure and temperature.

[1]  E. Lellouch,et al.  Water vapor in Titan's stratosphere from Cassini CIRS far-infrared spectra , 2012 .

[2]  P. A. R. Ade,et al.  EChO - Exoplanet Characterisation Observatory , 2010, 1112.2728.

[3]  A. Burrows,et al.  THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER “SUPER-EARTHS” , 2012, 1203.1921.

[4]  S. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey.II.The Southern M Dwarfs and Investigation of Magnetic Activity , 1996 .

[5]  E. Agol,et al.  APOSTLE OBSERVATIONS OF GJ 1214b: SYSTEM PARAMETERS AND EVIDENCE FOR STELLAR ACTIVITY , 2010, 1012.1180.

[6]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[7]  J. Fortney,et al.  OBSERVATIONAL EVIDENCE FOR A METAL-RICH ATMOSPHERE ON THE SUPER-EARTH GJ1214b , 2011, 1103.2370.

[8]  Norman Murray,et al.  BROADBAND TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH GJ 1214b SUGGESTS A LOW MEAN MOLECULAR WEIGHT ATMOSPHERE , 2011, 1104.0011.

[9]  P. Drossart,et al.  Models of the global cloud structure on Venus derived from Venus Express observations , 2012 .

[10]  P. Drossart,et al.  Correlations between cloud thickness and sub‐cloud water abundance on Venus , 2010 .

[11]  Nikole K. Lewis,et al.  SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE , 2012, 1301.6763.

[12]  S. Aigrain,et al.  A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720 nm , 2012, 1210.7798.

[13]  T. Encrenaz,et al.  Probing Venus's cloud structure with Galileo NIMS , 1993 .

[14]  David Charbonneau,et al.  The MEarth project: searching for transiting habitable super-Earths around nearby M dwarfs , 2008, Proceedings of the International Astronomical Union.

[15]  G. Orton,et al.  Uranus’ cloud structure and seasonal variability from Gemini-North and UKIRT observations , 2011 .

[16]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[17]  D. Crisp Radiative forcing of the Venus mesosphere: I. Solar fluxes and heating rates , 1986 .

[18]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[19]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[20]  J L Lunine Atmospheric Radiation. Theoretical Basis. R. M. Goody and Y. L. YUNG. Second edition. Oxford University Press, New York, 1989. xvi, 519 pp., illus. $95. , 1990, Science.

[21]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[22]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[23]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[24]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[25]  G. Ballester,et al.  Hubble Space Telescope STIS Optical Transit Transmission Spectra of the Hot Jupiter HD 209458b , 2008, 0802.3864.

[26]  S. Tashkun,et al.  CDSD-1000, the high-temperature carbon dioxide spectroscopic databank , 2003 .

[27]  J. Fortney,et al.  THE NATURE OF THE ATMOSPHERE OF THE TRANSITING SUPER-EARTH GJ 1214b , 2010, 1001.0976.

[28]  J. Koppenhoefer,et al.  Optical to near-infrared transit observations of super-Earth GJ 1214b: water-world or mini-Neptune? , 2011, 1111.2628.

[29]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[30]  Joanna K. Barstow,et al.  On the potential of the EChO mission to characterise gas giant atmospheres , 2012, 1212.5020.

[31]  David Crisp,et al.  Near-infrared light from Venus' nightside - A spectroscopic analysis , 1993 .

[32]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[33]  Patrick G. J. Irwin,et al.  Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy , 2011, 1110.2934.

[34]  D. Stam,et al.  The influence of forward-scattered light in transmission measurements of (exo)planetary atmospheres , 2012, 1208.2795.

[35]  J. Champion,et al.  Spherical top data system (STDS) software for the simulation of spherical top spectra , 1998 .

[36]  J. Fortney,et al.  THE ATMOSPHERIC CHEMISTRY OF GJ 1214b: PHOTOCHEMISTRY AND CLOUDS , 2011, 1104.5477.

[37]  Sara Seager,et al.  THE OPTICAL AND NEAR-INFRARED TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ 1214b: FURTHER EVIDENCE FOR A METAL-RICH ATMOSPHERE , 2011, 1109.0582.

[38]  T. Owen,et al.  Jupiter's ammonia clouds—localized or ubiquitous? , 2005 .

[39]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[40]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[41]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[42]  David Charbonneau,et al.  THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS , 2010, 1012.0518.

[43]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[44]  F. Murgas,et al.  Narrow band Hα photometry of the super-Earth GJ 1214b with GTC/OSIRIS tunable filters , 2012, 1206.6619.