Reformulation based MaxSAT robustness

The presence of uncertainty in the real world makes robustness a desirable property of solutions to constraint satisfaction problems (CSP). A solution is said to be robust if it can be easily repaired when unexpected events happen. This issue has already been addressed in the frameworks of Boolean satisfiability (SAT) and Constraint Programming (CP). Most existing works on robustness implement search algorithms to look for robust solutions instead of taking the declarative approach of reformulation, since reformulation tends to generate prohibitively large formulas, especially in the CP setting. In this paper we consider the unaddressed problem of robustness in weighted MaxSAT, by showing how robust solutions to weighted MaxSAT instances can be effectively obtained via reformulation into pseudo-Boolean formulae. Our encoding provides a reasonable balance between increase in size and performance, as shown by our experiments in the robust resource allocation framework. We also address the problem of flexible robustness, where some of the breakages may be left unrepaired if a totally robust solution does not exist. In a sense, since the use of SAT and MaxSAT encodings for solving CSP has been gaining wide acceptance in recent years, we provide an easy-to-implement new method for achieving robustness in combinatorial optimization problems.

[1]  Maria Luisa Bonet,et al.  Solving (Weighted) Partial MaxSAT through Satisfiability Testing , 2009, SAT.

[2]  Josep Argelich,et al.  On Solving Boolean Multilevel Optimization Problems , 2009, IJCAI 2009.

[3]  Yoav Shoham,et al.  Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.

[4]  Felip Manyà,et al.  MaxSAT, Hard and Soft Constraints , 2021, Handbook of Satisfiability.

[5]  Barry O'Sullivan,et al.  Robust solutions for combinatorial auctions , 2005, EC '05.

[6]  Toby Walsh,et al.  Improved Algorithm for Finding (a, b)-Super Solutions , 2005, CP.

[7]  Stefan Woltran,et al.  Special issue on answer set programming , 2011, AI Commun..

[8]  Toby Walsh,et al.  Handbook of Constraint Programming (Foundations of Artificial Intelligence) , 2006 .

[9]  Craig Boutilier,et al.  Solving Combinatorial Auctions Using Stochastic Local Search , 2000, AAAI/IAAI.

[10]  Emmanuel Hebrard,et al.  Super Solutions in Constraint Programming , 2004, CPAIOR.

[11]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[12]  Toby Walsh,et al.  SAT v CSP , 2000, CP.

[13]  Peter J. Stuckey,et al.  Reducing Chaos in SAT-Like Search: Finding Solutions Close to a Given One , 2011, SAT.

[14]  H. P. Williams,et al.  Model Building in Mathematical Programming , 1979 .

[15]  Vasco M. Manquinho,et al.  Pseudo-Boolean and Cardinality Constraints , 2021, Handbook of Satisfiability.

[16]  Miroslaw Truszczynski,et al.  Satisfiability Testing of Boolean Combinations of Pseudo-Boolean Constraints using Local-search Techniques , 2007, Constraints.

[17]  L. C. Thomas,et al.  Model Building in Mathematical Programming (2nd Edition) , 1986 .

[18]  Emmanuel Hebrard,et al.  Robust solutions for constraint satisfaction and optimisation under uncertainty , 2007 .

[19]  Josep Argelich,et al.  Modelling Max-CSP as Partial Max-SAT , 2008, SAT.

[20]  Yoav Shoham,et al.  Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.

[21]  Barry O'Sullivan,et al.  Finding Diverse and Similar Solutions in Constraint Programming , 2005, AAAI.

[22]  Víctor Muñoz i Solà,et al.  Robustness on resource allocation problems , 2011 .

[23]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .

[24]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[25]  Nicolas Beldiceanu,et al.  9th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR'12) , 2012 .

[26]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[27]  Amitabha Roy Fault Tolerant Boolean Satisfiability , 2006, J. Artif. Intell. Res..

[28]  Matthew L. Ginsberg,et al.  Supermodels and Robustness , 1998, AAAI/IAAI.

[29]  Simon de Givry,et al.  2006 and 2007 Max-SAT Evaluations: Contributed Instances , 2008, J. Satisf. Boolean Model. Comput..

[30]  Barry O'Sullivan,et al.  Weighted Super Solutions for Constraint Programs , 2005, AAAI.

[31]  Emmanuel Hebrard,et al.  Robust Solutions for Constraint Satisfaction and Optimization , 2004, AAAI.

[32]  Dídac Busquets,et al.  A declarative approach to robust weighted Max-SAT , 2010, PPDP.

[33]  Vasco M. Manquinho,et al.  Algorithms for Weighted Boolean Optimization , 2009, SAT.

[34]  Daniel Le Berre,et al.  The Sat4j library, release 2.2 , 2010, J. Satisf. Boolean Model. Comput..

[35]  Rainer Weigel,et al.  On Reformulation of Constraint Satisfaction Problems , 1998, ECAI.

[36]  Marius Thomas Lindauer,et al.  Potassco: The Potsdam Answer Set Solving Collection , 2011, AI Commun..

[37]  Josep Argelich,et al.  The First and Second Max-SAT Evaluations , 2008, J. Satisf. Boolean Model. Comput..