Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors

Using first-principles electronic structure calculations we identify the anion vacancies in II-VI and chalcopyrite Cu-III-VI2 semiconductors as a class of intrinsic defects that can exhibit metastable behavior. Specifically, we predict persistent electron photoconductivity (n-type PPC) caused by the oxygen vacancy VO in n-ZnO, and persistent hole photoconductivity (p-type PPC) caused by the Se vacancy VSe in p-CuInSe2 and p-CuGaSe2. We find that VSe in the chalcopyrite materials is amphoteric having two "negative-U" like transitions, i.e. a double-donor transition e(2+/0) close to the valence band and a double-acceptor transition e(0/2-) closer to the conduction band. We introduce a classification scheme that distinguishes two types of defects (e.g., donors): type-alpha, which have a defect-localized-state (DLS) in the gap, and type-beta, which have a resonant DLS within the host bands (e.g., conduction band). In the latter case, the introduced carriers (e.g., electrons) relax to the band edge where they can occupy a perturbed-host-state (PHS). Type alpha is non-conducting, whereas type beta is conducting. We identify the neutral anion vacancy as type-alpha and the doubly positively charged vacancy as type-beta. We suggest that illumination changes the charge state of the anion vacancy and leads to a crossover between alpha- and beta-type behavior, resulting in metastability and PPC. In CuInSe2, the metastable behavior of VSe is carried over to the (VSe-VCu) complex, which we identify as the physical origin of PPC observed experimentally. We explain previous puzzling experimental results in ZnO and CuInSe2 in the light of this model.

[1]  D. G. Thomas,et al.  Isoelectronic Traps Due to Nitrogen in Gallium Phosphide , 1965 .

[2]  D. G. Thomas,et al.  Isoelectronic Traps Due to Nitrogen in Gallium Phosphide , 1965 .

[3]  D. G. Thomas,et al.  Isoelectronic Donors and Acceptors , 1966 .

[4]  J. Smith,et al.  ESR of electron irradiated ZnO confirmation of the F + center , 1970 .

[5]  G. Iseler,et al.  Photoluminescence due to isoelectric oxygen and tellurium traps in II–VI alloys , 1970 .

[6]  D. Langer,et al.  uv photoemission measurements of the upper d levels in the IIB-VIA compounds , 1972 .

[7]  J. M. Meese,et al.  Displacement Thresholds in ZnO , 1972 .

[8]  D. A. Shirley,et al.  Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy. [GaSb; InSb] , 1974 .

[9]  C. Klingshirn,et al.  The Luminescence of ZnO under High One- and Two-Quantum Excitation†‡ , 1975 .

[10]  B. Burkey,et al.  Persistent photoconductivity in donor‐doped Cd1−xZnxTe , 1976 .

[11]  V. Soriano,et al.  Photosensitivity of the EPR spectrum of the F+ center in ZnO , 1976 .

[12]  D. Lang,et al.  Large-Lattice-Relaxation Model for Persistent Photoconductivity in Compound Semiconductors , 1977 .

[13]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[14]  R. N. Dexter,et al.  Optical properties of the chalcopyrite semiconductors ZnGeP/sub 2/, ZnGeAs/sub 2/, CuGaS/sub 2/, CuAlS/sub 2/, CuInSe/sub 2/, and AgInSe/sub 2/ , 1977 .

[15]  A. Zunger,et al.  CORRIGENDUM: Momentum-space formalism for the total energy of solids , 1979 .

[16]  D. Lang,et al.  Trapping characteristics and a donor-complex ( DX ) model for the persistent-photoconductivity trapping center in Te-doped Al x Ga 1 − x As , 1979 .

[17]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[18]  P. Vogl,et al.  Theory of Substitutional Deep Traps in Covalent Semiconductors , 1980 .

[19]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[20]  Alex Zunger,et al.  Theory of the band-gap anomaly in AB C 2 chalcopyrite semiconductors , 1984 .

[21]  S. Wasim Transport properties of CuInSe2 , 1986 .

[22]  A. Ramdas SPECTROSCOPY OF SHALLOW CENTERS IN SEMICONDUCTORS: PROGRESS SINCE 1960 , 1987 .

[23]  Chang,et al.  Theory of the atomic and electronic structure of DX centers in GaAs and AlxGa1-xAs alloys. , 1988, Physical review letters.

[24]  Chang,et al.  Energetics of DX-center formation in GaAs and AlxGa1-xAs alloys. , 1989, Physical review. B, Condensed matter.

[25]  Patricia M. Mooney,et al.  Deep donor levels (DX centers) in III‐V semiconductors , 1990 .

[26]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[27]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[28]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[29]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[30]  Northrup,et al.  Compensation of p-type doping in ZnSe: The role of impurity-native defect complexes. , 1995, Physical review letters.

[31]  Su-Huai Wei,et al.  Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys , 1995 .

[32]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[33]  H. Schock,et al.  The metastable changes of the trap spectra of CuInSe2‐based photovoltaic devices , 1996 .

[34]  A. Zunger,et al.  Stabilization of Ternary Compounds via Ordered Arrays of Defect Pairs , 1997 .

[35]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[36]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[37]  Johannes Pollmann,et al.  Role of semicore d electrons in quasiparticle band-structure calculations , 1998 .

[38]  Su-Huai Wei,et al.  Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties , 1998 .

[39]  U. Rau,et al.  Persistent photoconductivity in Cu(In,Ga)Se2 heterojunctions and thin films prepared by sequential deposition , 1998 .

[40]  A. Zunger,et al.  Effects of Na on the electrical and structural properties of CuInSe2 , 1999 .

[41]  John D. Perkins,et al.  Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs{sub 1{minus}x}N{sub x } with x {lt} 0.03 , 1999 .

[42]  W. Jaegermann,et al.  Band offsets at the ZnSe/CuGaSe2(001) heterointerface , 1999 .

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  Uwe Rau,et al.  Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .

[45]  U. Rau,et al.  A model for the open circuit voltage relaxation in Cu(In, Ga)Se2 heterojunction solar cells , 1999 .

[46]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[47]  Jean-François Guillemoles,et al.  Stability Issues of Cu(In,Ga)Se2-Based Solar Cells , 2000 .

[48]  V. Walle,et al.  Hydrogen as a cause of doping in zinc oxide , 2000 .

[49]  A. Zunger,et al.  Theory of electronic structure evolution in GaAsN and GaPN alloys , 2001 .

[50]  B. Meyer,et al.  The Oxygen Vacancy as the Origin of a Green Emission in Undoped ZnO , 2001 .

[51]  Seiji Isotani,et al.  Energetics of native defects in ZnO , 2001 .

[52]  D. Look,et al.  Magnetic resonance studies of ZnO , 2001 .

[53]  A. Zunger,et al.  Evolution of III-V nitride alloy electronic structure: the localized to delocalized transition. , 2001, Physical review letters.

[54]  S. Lany,et al.  Vacancies in CdTe: experiment and theory , 2001 .

[55]  Chris G. Van de Walle,et al.  Defect analysis and engineering in ZnO , 2001 .

[56]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[57]  S. Louie,et al.  Quasiparticle band structure of ZnS and ZnSe , 2002 .

[58]  A. Zunger,et al.  n-type doping of oxides by hydrogen , 2002 .

[59]  Frank Henecker,et al.  Hydrogen: a relevant shallow donor in zinc oxide. , 2002, Physical review letters.

[60]  M. Usuda,et al.  All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO , 2002, cond-mat/0202308.

[61]  J Wu,et al.  Diluted II-VI oxide semiconductors with multiple band gaps. , 2003, Physical review letters.

[62]  V. A. Dravin,et al.  Proton implantation effects on electrical and recombination properties of undoped ZnO , 2003 .

[63]  D. Chadi Amphoteric nature of vacancies in zinc blende semiconductors , 2003 .

[64]  Bruno K. Meyer,et al.  Oxygen vacancies in ZnO , 2003 .

[65]  Ab initio calculations of doping mechanisms in SrTiO3 , 2004 .

[66]  A. Zunger,et al.  Why can CuInSe2 be readily equilibrium-doped n-type but the wider-gap CuGaSe2 cannot? , 2004 .

[67]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[68]  T. Kotani,et al.  All-electron self-consistent GW approximation: application to Si, MnO, and NiO. , 2004, Physical review letters.

[69]  J. Buban,et al.  Structural and electronic properties of oxygen vacancies in cubic and antiferrodistortive phases of SrTiO 3 , 2004 .

[70]  I. Tanaka,et al.  First-principles calculations of anion vacancies in oxides and nitrides , 2004 .

[71]  A. Zunger,et al.  Metal-dimer atomic reconstruction leading to deep donor states of the anion vacancy in II-VI and chalcopyrite semiconductors. , 2004, Physical review letters.

[72]  A. Zunger,et al.  n -type doping of CuIn Se 2 and CuGa Se 2 , 2005 .

[73]  G. D. Watkins,et al.  Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO , 2005 .

[74]  A. Zunger,et al.  Halogen n-type doping of chalcopyrite semiconductors , 2005 .