Solution‐Processed Fullerene‐Based Organic Schottky Junction Devices for Large‐Open‐Circuit‐Voltage Organic Solar Cells

A solution-processed fullerene-based organic Schottky junction photovoltaic device is fabricated to produce a large open circuit voltage, 0.85-0.95 V, which is higher than that of most organic bulk-heterojunction devices. A power conversion efficiency of 5% is achieved in fullerene-derivative [6,6]-phenyl-C71-butyric acid methylester-based Schottky junction devices.

[1]  Markus Schwoerer,et al.  Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes , 1993 .

[2]  Ross,et al.  Intermolecular charge-transfer excitation in C60 films: Evidence from luminescence and photoconductivity. , 1995, Physical review. B, Condensed matter.

[3]  Y. Tokura,et al.  Experimental determination of excitonic structure in polythiophene , 1997 .

[4]  H. Bässler,et al.  INTRINSIC PHOTOCONDUCTION IN PPV-TYPE CONJUGATED POLYMERS , 1997 .

[5]  Piotr Petelenz,et al.  Charge-transfer-induced Frenkel exciton splitting in crystalline fullerene , 1998 .

[6]  Paul Seidler,et al.  Direct Determination of the Exciton Binding Energy of Conjugated Polymers Using a Scanning Tunneling Microscope , 1998 .

[7]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[8]  A. Theiss,et al.  Resonant Electron Transfer in Collisions between Two Fullerene Ions. , 2003, Physical review letters.

[9]  M. Knupfer,et al.  Electrochemical adjustment of the work function of a conducting polymer , 2004 .

[10]  Bernard Kippelen,et al.  Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions , 2004 .

[11]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[12]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[13]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[14]  Donal D. C. Bradley,et al.  A photophysical study of PCBM thin films , 2007 .

[15]  Yang Yang,et al.  Origin of photomultiplication in C60 based devices , 2007 .

[16]  N. S. Sariciftci,et al.  Correlation of crystalline and structural properties of C60 thin films grown at various temperature with charge carrier mobility , 2007 .

[17]  Kazuhiro Saito,et al.  Efficient oligothiophene:fullerene bulk heterojunction organic photovoltaic cells , 2008 .

[18]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[19]  V. Singh,et al.  Schottky diode solar cells on electrodeposited copper phthalocyanine films , 2009 .

[20]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[21]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[22]  Stephen R. Forrest,et al.  Solution-processed squaraine bulk heterojunction photovoltaic cells. , 2010, ACS nano.

[23]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[24]  Yongfang Li,et al.  High‐Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene‐C70 Bisadduct , 2010 .

[25]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[26]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[27]  Jinsong Huang,et al.  Increased efficiency of low band gap polymer solar cells at elevated temperature and its origins , 2011 .

[28]  Sean E. Shaheen,et al.  Time-of-Flight Studies of Electron-Collection Kinetics in Polymer:Fullerene Bulk-Heterojunction Solar Cells , 2011 .

[29]  D. Bradley,et al.  Effect of Crystallization on the Electronic Energy Levels and Thin Film Morphology of P3HT:PCBM Blends , 2011 .

[30]  Feng Xu,et al.  Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. , 2011, Angewandte Chemie.

[31]  Juan Bisquert,et al.  Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells , 2011 .

[32]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[33]  Daniel Moses,et al.  Bulk Heterojunction Solar Cells with Large Open‐Circuit Voltage: Electron Transfer with Small Donor‐Acceptor Energy Offset , 2011, Advanced materials.

[34]  Hongkun Tian,et al.  Bulk Heterojunction Photovoltaic Cells with Low Donor Concentration , 2011, Advanced materials.

[35]  J. Pallarès,et al.  Degradation Effects Related to the Hole Transport Layer in Organic Solar Cells , 2011 .

[36]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[37]  Alan J. Heeger,et al.  Charge Formation, Recombination, and Sweep‐Out Dynamics in Organic Solar Cells , 2012 .

[38]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[39]  J. Bisquert,et al.  Recombination in Organic Bulk Heterojunction Solar Cells: Small Dependence of Interfacial Charge Transfer Kinetics on Fullerene Affinity. , 2012, The journal of physical chemistry letters.

[40]  Zhenan Bao,et al.  High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. , 2012, Journal of the American Chemical Society.

[41]  Stephan Irle,et al.  Modeling Charge Transfer in Fullerene Collisions via Real-Time Electron Dynamics. , 2012, The journal of physical chemistry letters.

[42]  Yongbo Yuan,et al.  Tuning the Energy Level Offset between Donor and Acceptor with Ferroelectric Dipole Layers for Increased Efficiency in Bilayer Organic Photovoltaic Cells , 2012, Advanced materials.

[43]  M. Tsukada,et al.  Role of intermolecular charge delocalization on electron transport in fullerene aggregates , 2012 .

[44]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.